

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade (III Cycle) Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB202 – LINEAR INTEGRATED CIRCUITS

II YEAR/ IV SEMESTER

UNIT 3 – WAVEFORM GENERATORS AND VOLTAGE REGULATORS

TOPIC – Comparator

Comparator

- A comparator is a circuit which compares a signal voltage applied at one input of an op-amp with a known reference voltage at the other input.
- It is basically an open loop op amp with output +Vsat or -Vsat as shown in ideal characteristics.

There are basically two types of comparators.

1. Non-inverting comparator

2. Inverting comparator

22.02.2025

Non-inverting comparator

- A fixed reference voltage Vref is applied to (–) input and a time varying \bullet signal Vi is applied to (+) input.
- There are 3 conditions for a comparator.
- Vi < Vref, Vo = -Vsat
- Vi > Vref, Vo = +Vsat
- Vi = Vref changes the state of op-amp

Non-inverting comparator

The output waveform for a sinusoidal input signal applied to the +ve input is shown in figure for +ve and -ve Vref respectively

Inverting comparator

Figure shows a practical inverting comparator in which the reference voltage Vref is applied to the (+) input and Vi is applied to the - ve input.

Inverting comparator

For a sinusoidal input signal, the output waveform is shown in figure for Vref +ve and –ve respectively.

Fig. 5.3 (a) Inverting comparator. Input and output waveforms (b) V_{ref} > 0 (c) V_{ref} < 0

Applications

Some important applications of comparator are

- Zero crossing detector
- Window detector
- Time marker generator
- Phase meter.

Zero crossing detector

Fig. 5.4 (a) Zero crossing detector (b) Input and output waveforms

The circuit is also called as a sine to square wave generator.

Assessment

1. Depending on the value of input and reference voltage a comparator can be named as

- a) Voltage follower
- b) Digital to analog converter
- c) Schmitt trigger
- d) Voltage level detector

- 2. Zero crossing detectors is also called as
- a) Square to sine wave generator
- **b**) Sine to square wave generator
- c) Sine to triangular wave generator
- d) All of the mentioned

THANK YOU

22.02.2025

Comparator /23ECB202-LIC/Dr.V.S.Nishok/Assistant Professor/ECE/SNSCT

11