

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23EET102 / ELECTRIC CIRCUIT ANALYSIS I YEAR / II SEMESTER UNIT-III: AC CIRCUITS

AC FUNDAMENTALS & RLC-1

TOPIC OUTLINE

AC fundamentalsPeak and RMSRLC

AC FUNDAMENTALS

PARAMETER VALUES:

- Instantaneous (v, i)
- Peak (Vm, Im)
- Average (Vave, lave)
- RMS (V, I or Vrms, Irms)

Parameters V and I are in sine wave.

AC FUNDAMENTALS

- Peak (Vm, Im): It is the maximum value
- Instantaneous (v, i): The values at any instant. It may be voltage or current.
- Average (Vave, lave): Average value is the sum of instantaneous power in one period.
- It is also said to be as area under the curve divided by time.
- Average power for half cycle is shown
- for full cycle is ZERO

ROOT MEAN SQUARE (RMS)

The RMS value of a set of values (or a continuoustime waveform) is the square root of the arithmetic mean of the squares of the original values.

$$rms = \frac{Vpeak}{\sqrt{2}}$$
 (for an undistorted sine wave)

 $rms = \frac{Vpeak}{\sqrt{3}}$ (for an undistorted triangle wave)

 $rms = \frac{Vpeak}{1}$ (for a symmetrical square wave)

RMS

RMS value for I and V is given

$$I = I_P \sin \omega t$$

$$V = V_P \sin \omega t$$

Where, ωt = radians per second

RESISTOR

- Resistance to the flow of the current. Measured in Ohms Ω
- It opposes an Electric Current

 A capacitor is a passive element designed to store energy in its electric field.

 A capacitor consists of two conducting plates separated by an insulator (or dielectric).

 Capacitance C is the ratio of the charge q on one plate of a capacitor to the voltage difference v between the two plates, measured in farads (F).

$$q = C v$$
 and

$$C = \frac{\varepsilon A}{d}$$

- Where ε is the permittivity of the dielectric material between the plates, A is the surface area of each plate, d is the distance between the plates.
- Unit: F, pF (10⁻¹²), nF (10⁻⁹), and μ<u>F (10⁻⁶)</u>

- If i is flowing into the +ve terminal of C
 - Charging => i is +ve
 - Discharging => i is -ve

 The current-voltage relationship of capacitor according to above convention is

$$i = C \frac{d v}{d t}$$

and
$$v = \frac{1}{C} \int_{t_0}^t i \, dt + v(t_0)$$

 The energy, w, stored in the capacitor is

$$w = \frac{1}{2} C v^2$$

- A capacitor is
 - an **open circuit** to dc (dv/dt = 0).
 - its voltage cannot change abruptly.

Example 1

The current through a 100-µF capacitor is

$$i(t) = 50 \sin(120 \pi t) \text{ mA}.$$

Calculate the voltage across it at t = 1 ms and t = 5 ms.

Take
$$v(0) = 0$$
.

Answer:

v(1ms) = 93.14 mV

v(5ms) = 1.7361V

RECAP....

...THANK YOU