Activity: Investigating the Frictional Properties of Agricultural Produce

Date: 27.3.2025

Objective:

To understand the **frictional properties** (angle of repose and angle of internal friction) of different agricultural produce and how factors like shape, size, and surface texture affect friction.

Materials Needed:

- 1. Different types of agricultural produce (e.g., wheat, corn, rice, beans, peanuts).
- 2. A wooden or metal board (tilting plane).
- 3. A protractor (for measuring angles).
- 4. A ruler or measuring tape.
- 5. A small container or box for holding the produce.
- 6. A weighing scale (optional, for mass measurements).

Procedure:

Part 1: Measuring the Angle of Repose

- 1. Pour a small quantity of one type of produce onto a flat surface to form a pile.
- 2. Carefully measure the height (h) and radius (r) of the pile.
- 3. Use the formula:

 $\theta = \tan^{-1}(\frac{h}{m})$

to calculate the angle of repose.

4. Repeat with different types of produce and compare the results.

Part 2: Measuring the Angle of Internal Friction

- 1. Place a small amount of seeds on the tilting plane.
- 2. Slowly increase the angle of the plane until the seeds **begin to slide**.
- 3. Measure and record this angle (ϕ \phi ϕ), which represents the **angle of internal friction**.
- 4. Repeat for different produce and analyze the differences.

Example 1: Using the Friction Force Formula

Consider that **10 kg** of wheat grain is sliding on a horizontal surface. The force required to keep it moving at a constant speed is **30 N**. What is the coefficient of kinetic friction ?(μ k)

Step 1: Calculate Normal Force (Fn)

Since the grain is on a horizontal surface, the normal force is equal to the weight:

Fn=mg

Where:

m=10 kg (mass of the body)

• g=9.81 m/s² (acceleration due to gravity)

Fn=10×9.81=98.1 N

Step 2: Use the Friction Formula

Given that the friction force Ff=30 N:

 μ k=Ff/Fn = 30/98.1

So, the coefficient of kinetic friction is **0.31**.

Example 2: Using an Inclined Plane

A block is placed on an inclined plane, and it **just starts to slide** when the angle reaches **30°**. Find the coefficient of static friction (μ_s).

Solution:

Since the object starts to slide at θ =30°

we use:

μ_s=tan[™](θ)

=tan(30∘)≈0.577

So, the coefficient of static friction is **0.577**.

Discussion Questions:

- Which produce had the highest/lowest angle of repose?
- How does the surface texture of seeds affect friction?
- Why do rounder seeds slide more easily than irregularly shaped ones?
- How can farmers use this information in storage and transportation?

How can farmers use this information in storage and transportation?

Farmers can use the **frictional properties** of agricultural produce in several ways to improve **storage**, **handling**, and transportation efficiency.

1. Storage Optimization

- Grain Bin Design:
 - A higher angle of repose means the grain forms steeper piles, allowing for better stacking and efficient use of space.
 - A **lower angle of repose** means the grain spreads more, requiring different storage designs.
- Silo Discharge Efficiency:
 - Crops with **high internal friction** (e.g., rough seeds) may flow poorly and require **vibrators or aeration systems** to prevent clogging.
 - **Smooth, round seeds** (e.g., soybeans) flow more easily, reducing the risk of blockage.

2. Transportation Handling

- Bulk Transport Efficiency:
 - Knowing the **angle of repose** helps farmers decide how to load grains onto trucks or ships to **prevent spills**.
 - A **low angle of repose** may require higher sidewalls to contain the produce.
- Reducing Product Loss & Damage:
 - Seeds with high internal friction require gentler handling to avoid mechanical damage.
 - Round seeds with lower friction flow smoothly through conveyors, reducing energy use.

3. Machinery & Equipment Design

- Conveyor Belt Selection:
 - Materials with high friction need **stronger belts** to move them efficiently.
 - o Low-friction materials require **steeper conveyor angles** to prevent slipping.
- Auger & Chute Design:
 - Crops with high internal friction might get stuck in **narrow chutes**, requiring a wider design or smoother surface.
 - Farmers can use coatings or materials like **polished steel or Teflon** to reduce sticking.

4. Preventing Spoilage & Ensuring Safety

- Aeration & Drying Considerations:
 - Seeds that pack tightly due to high internal friction may **trap moisture**, increasing the risk of mold.
 - Understanding friction helps design **better airflow systems** for drying grains evenly.
- Preventing Grain Bin Collapses:
 - High-friction grains may create **bridging effects**, leading to dangerous empty spaces inside silos.
 - Proper unloading techniques and periodic checks can prevent sudden collapses.

By applying this knowledge, farmers can **reduce waste, improve efficiency, and enhance safety** in storage and transport.