

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB212 - DIGITAL SIGNAL PROCESSING

LINEAR PHASE FIR FILTER/23ECE203 –
DIGITAL SIGNAL PROCESSING/R.SATHISH
KUMAR/ECE/SNSCT

II YEAR/ IV SEMESTER

UNIT 3 – FIR FILTER DESIGN

TOPIC - Linear Phase FIR Filter

02/17/2021

FIR FILTERS

- Finite Impulse Response (FIR) Systems: Unit sample response (or) Impulse response h(n) has finite no. of terms
- Finite Impulse Response (FIR) Filters: The filters designed by considering all the finite samples of impulse response
- The specification of a digital filter will be desired frequency response $H_d(e^{j\omega})$. The desired impulse response $h_d(n)$ of the digital filter can be obtained by taking inverse Fourier transform $H_d(e^{j\omega})$. The $h_d(n)$ will be an infinite duration discrete time signal defined for all values of n in the range $-\infty$ to $+\infty$

FIR FILTERS

- The transfer function H(z) of the digital filter is obtained by taking Z transform of impulse response. Since $h_d(n)$ is an infinite duration signal, the transfer function obtained from $h_d(n)$ will have infinite terms, which cannot be realized or implemented in a digital system
- Therefore. Finite number of samples $h_d(n)$ are selected to form the impulse response, h(n) of the filter.
- The transfer function H(z) is obtained by taking Z transform of finite sample impulse response h(n). The filters designed by using finite samples of impulse response are called Finite Impulse Response Filters.

ADVANTAGES & DISADVANTAGES OF FIR FILTERS

- Advantages: FIR filters with exactly linear phase can be easily designed
- Efficient realizations of FIR filter exist as both recursive and nonrecursive structures
- FIR filters realized nonrecursively, i.e., by direct convolution are always stable
- Roundoff noise, which is inherent in realizations with finite precision arithmetic can easily be made small for nonrecursive realization of FIR filters
- **Disadvantages:** The duration of the impulse response should be large to adequately approximate sharp cutoff filter. Hence a large amount of processing is required to realize such filters when realized via slow convolution
- The delay of linear phase FIR filters need not always be an integer no. of samples. This non-integral delay can lead to problems in signal processing applications

STEPS IN DESIGNING FIR FILTER

- Choose an ideal (desired) frequency response, $H_d(e^{j\omega})$
- Take inverse Fourier transform of $H_d(e^{j\omega})$ to get $h_d(n)$ or sample $H_d(e^{j\omega})$ at finite number of points (N Point) to get H(k)
- If $h_d(n)$ is determined then convert the infinite duration $h_d(n)$ to a finite duration h(n) or if H(k) is determined then take N-Point inverse DFT to get h(n).
- Take Z transform of h(n) to get H(z), Where H(z)-transfer function of the digital filter
- Choose a suitable structure and realize the filter
- Verify the design, In order to verify the design, determine the actual frequency response $H(e^{j\omega})$ of the filter, by letting $z=e^{j\omega}$ in H(z) and sketch the magnitude response $|H(e^{j\omega})|$

LTI SYSTEM AS FREQUENCY SELECTIVE FILTERS

• The frequency response $H(e^{j\omega})$ is a complex quantity,

$$H(e^{j\omega}) = |H(e^{j\omega})| \angle H(e^{j\omega}) = C e^{-j\alpha\omega}$$

where, $|H(e^{j\omega})| = C$

Magnitude

 $\angle H(e^{j\omega}) = -\alpha\omega$

Phase

• Magnitude of frequency response is constant and its phase is a linear function of frequency. If the phase function of frequency response of a filter is linear function of frequency, then the filter is called Linear phase filter

LTI SYSTEM &S FREQUENCY SELECTIVE FILTERS

• In order to examine the linear and nonlinear phase characteristics, two delay functions are defined and they are **Phase delay and Group delay**

Let,
$$\angle H(e^{i\omega}) = \theta(\omega)$$

Phase delay,
$$\tau_p = -\frac{\theta(\omega)}{\omega}$$

Group delay,
$$\tau_g = -\frac{d}{d\omega}\theta(\omega)$$

$$\theta(\omega) = -\alpha\omega$$

$$: \tau_{p} = -\frac{\theta(\omega)}{\omega} = -\frac{-\alpha\omega}{\omega} = \alpha$$

$$\tau_g = -\frac{d}{d\omega}\theta(\omega) = -\frac{d}{d\omega}(-\alpha\omega) = 0$$

IDEAL FREQUENCY RESPONSE OF LINEAR PHASE FIR FILTERS

- The filters are classified according to their frequency response characteristics. The ideal (desired) frequency response $H_d(e^{j\omega})$ of four major types of filters. They are Low pass, High pass, Band pass and Band stop filters
- The $H_d(e^{j\omega})$ is periodic, with periodicity of $\mathbf{0}$ to $\mathbf{2\pi}$ (or $-\pi$ to π). Also any analog frequency Ω will map (or can be converted) to frequency of digital system ω within the range $\mathbf{0}$ to $\mathbf{2\pi}$ (or $-\pi$ to π)
- Hence the frequency response of digital filters are defined in the interval 0 to 2π (or $-\pi$ to π)

IDEAL FREQUENCY RESPONSE OF LINEAR PHASE FIR FILTERS

Ideal Frequency Response of Low pass Filter $H_d(e^{j\omega})$

$$H_d(e^{j\omega}) = 0$$
 ; for $\omega = -\pi$ to $-\omega_c$
 $= C e^{-j\alpha\omega}$; for $\omega = -\omega_c$ to $+\omega_c$
 $= 0$; for $\omega = +\omega_c$ to $+\pi$

Ideal Frequency Response of High pass Filter $H_d(e^{j\omega})$

$$H_d(e^{j\omega}) = C e^{-j\alpha\omega}$$
; for $\omega = -\pi$ to $-\omega_c$
= 0; for $\omega = -\omega_c$ to $+\omega_c$
= $C e^{-j\alpha\omega}$; for $\omega = +\omega_c$ to $+\pi$

IDEAL FREQUENCY RESPONSE OF LINEAR PHASE FIR FILTERS

Ideal Frequency Response of Band pass Filter $H_d(e^{j\omega})$

$$\begin{split} H_d(e^{j\omega}) &= 0 &; \quad \text{for} \quad \omega = -\pi \quad \text{to} -\omega_{c2} \\ &= C \, e^{-j\alpha\omega} \, ; \quad \text{for} \quad \omega = -\omega_{c2} \, \text{to} -\omega_{c1} \\ &= 0 &; \quad \text{for} \quad \omega = -\omega_{c1} \, \text{to} +\omega_{c1} \\ &= C \, e^{-j\alpha\omega} \, ; \quad \text{for} \quad \omega = +\omega_{c1} \, \text{to} +\omega_{c2} \\ &= 0 &; \quad \text{for} \quad \omega = +\omega_{c2} \, \text{to} +\pi \end{split}$$

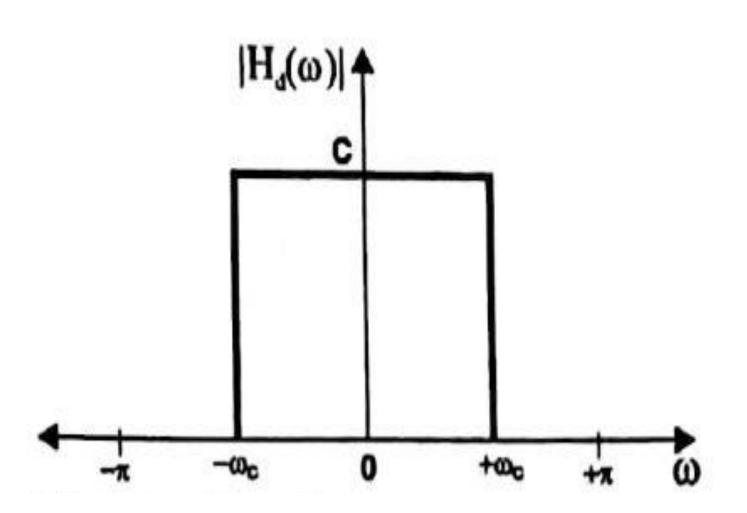
Ideal Frequency Response of Band stop Filter $H_d(e^{j\omega})$

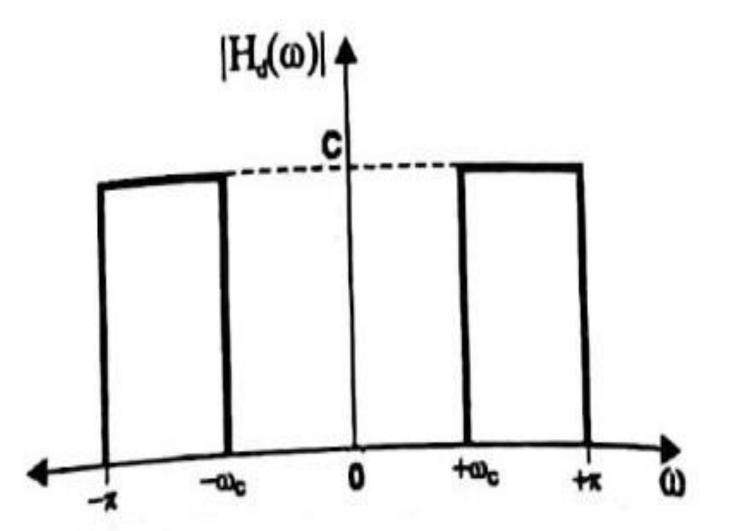
$$H_d(e^{j\omega}) = C e^{-j\alpha\omega}$$
; for $\omega = -\pi$ to $-\omega_{c2}$
 $= 0$; for $\omega = -\omega_{c2}$ to $-\omega_{c1}$
 $= C e^{-j\alpha\omega}$; for $\omega = -\omega_{c1}$ to $+\omega_{c1}$
 $= 0$; for $\omega = +\omega_{c1}$ to $+\omega_{c2}$
 $= C e^{-j\alpha\omega}$; for $\omega = +\omega_{c2}$ to $+\pi$

M&GNITUDE RESPONSE

IDEAL LOWPASS FILTER

IDEAL HIGHPASS FILTER

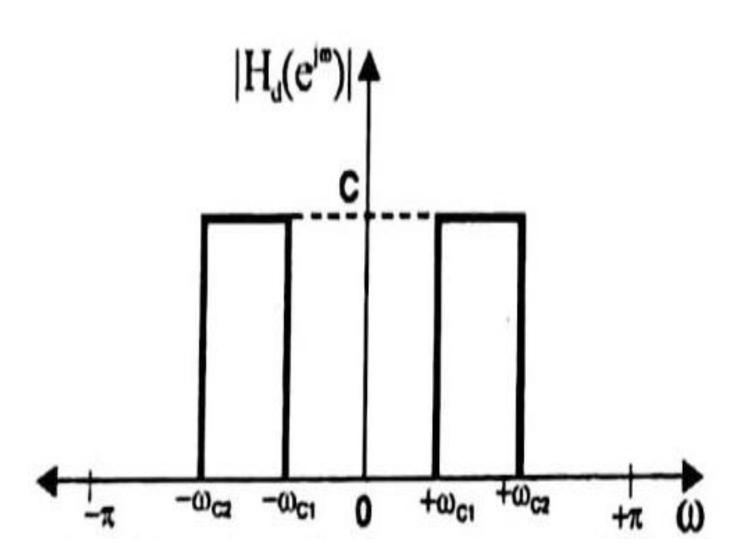


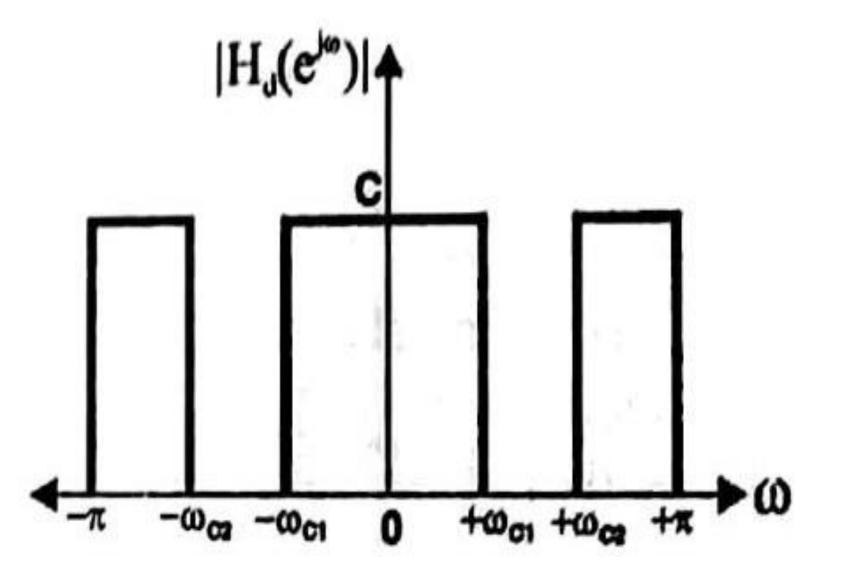


M&GNITUDE RESPONSE

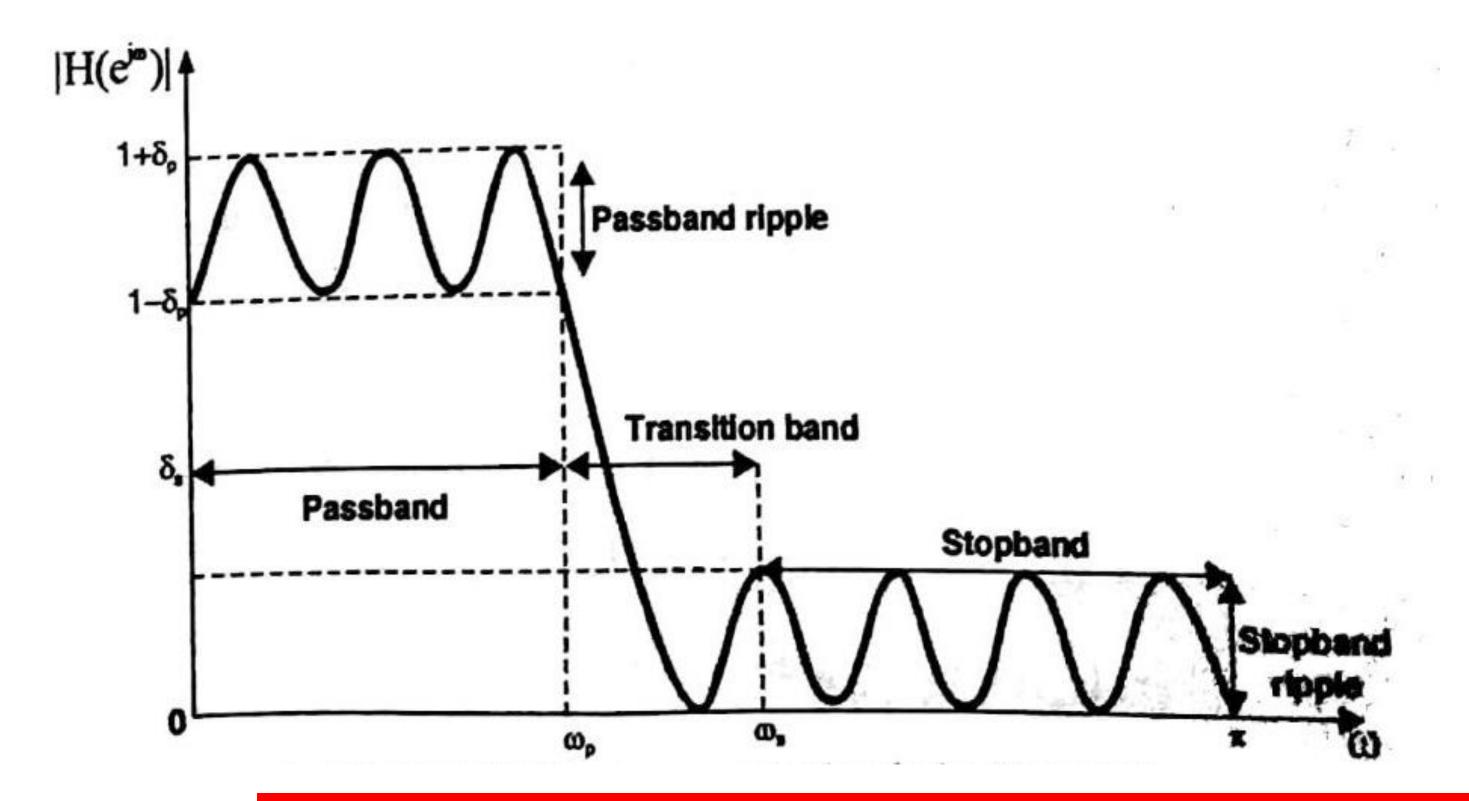
IDEAL BANDPASS FILTER

IDEAL BANDSTOP FILTER





MAGNITUDE RESPONSE OF A PRACTICAL LOWPASS FILTER



MAGNITUDE RESPONSE OF A PRACTICAL LOWPASS FILTER

- The transition of the frequency response from pass band to stop band defines the transition band or transition region of the filter
- The pass band edge frequency ω_p defines the edge of the pass band, while the stop band edge frequency ω_s denotes the beginning of the stop band
- δ_p Pass band ripple
- δ_s Stop band ripple
- ω_p Pass band edge frequency
- ω_s Stop band edge frequency

CHARACTERISTICS OF FIR FILTERS WITH LINEAR PHASE

- Let h(n) be the causal finite duration sequence defined over the interval $0 \le n \le N-1$ and the samples of h(n) be real
- The Fourier transform of h(n) is

$$H(e^{j\omega}) = \sum_{n=0}^{N-1} h(n) e^{-j\omega n}$$

Which is periodic in frequency with period 2π

:
$$H(e^{j\omega}) = H(e^{j\omega+2\pi m})$$
; for $m = 0, \pm 1, \pm 2, ...$

CHARACTERISTICS OF FIR FILTERS WITH LINEAR PHASE

• Since $H(e^{j\omega})$ is complex it can be expressed as **Amplitude function**, **Magnitude** function and Phase function

$$H(e^{j\omega}) = \pm \left| H(e^{j\omega}) \right| e^{j\angle H(e^{j\omega})} = A(\omega) e^{j\theta(\omega)}$$

where, $A(\omega) = \pm \left| H(e^{j\omega}) \right| = Amplitude function$
 $\theta(\omega) = \angle H(e^{j\omega}) = Phase function$
 $\left| H(e^{j\omega}) \right| = Magnitude function$

• When h(n) is real, the magnitude function is a symmetric function and the phase function is an asymmetric function $: |\mathbf{H}(\mathbf{e}^{\mathbf{j}\omega})| = |\mathbf{H}(-\mathbf{e}^{\mathbf{j}\omega})|$

$$|\Theta(\omega)| = -|\Theta(-\omega)|$$

ASSESSMENT

- 1. Define FIR Systems.
- 2. Mention the advantages and disadvantages of FIR Filters.
- 3. Based on frequency response the filters are classified into four basic types. They are -----, -----, ------, and ------
- 4. What are the steps involved in designing FIR Filter?
- 5. In order to examine the linear and nonlinear phase characteristics, two delay functions are ----- and -----
- 6. The Fourier transform of h(n) is ------

THANK YOU