
UNIT V– THREE-PHASE CIRCUITS,
GRAPH THEORY AND TUNED CIRCUITS 
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6.2 BALANCED THREE-PHASE VOLTAGES 

Three-phase balanced voltages are generated by three-phase generators, also called 

as alternators. An alternator has three-phase winding with terminals A-A’, B-B’ and C-

C’. The induced voltages in the three windings are equal in magnitude but out of phase 

by 1200 as shown in equation 6.1. 

eAA’ = Em cos ωt 

eBB’ = Em cos (ωt - 1200)          (6.1) 

eCC’ = Em cos (ωt - 2400) 

Because of the symmetry, these voltages are known as balanced three-phase voltages. 

The phasor descriptions of these three voltages are shown in Fig. 6.1 in which voltage 

EAA’ is taken as reference. 
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Generally, voltage EAA’ is written as EA and similar notation is true for other phasors 

also. Thus 

EA = E 00 

EB = E  -1200                                                                                                            (6.2) 

EC = E  - 2400 

It is to be noted that in case of balanced voltages,    EA + EB + EC = 0                       (6.3) 

Fig. 6.1 Phasor representation of three-phase balanced voltages.  
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6.3.1 THREE-PHASE GENERATOR WITH STAR-CONNECTED WINDING 

Fig. below shows the windings of three-phase star-connected generator, supplying 

power to a three-phase load.  

 

 

 

   

 

 

Let Iℓ and Iph be the magnitude of line and phase currents and Eℓ and Eph be the 

magnitude of line and phase voltages. In the case of star-connected three-phase 

system, as seen from Fig. 6.2, line current is equal to the phase current, i.e. 

Iℓ = Iph                                                                                                                          (6.4) 
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(6.7) 

For the three-phase star-connected generator, taking voltage EA as reference, the three 

phase voltages will be as shown in Fig. below. 

 

 

 

 

For the three-phase star-connected generator, the relationship between the line voltage 

and the phase voltage can be obtained as follows. Referring to Fig. 6.2, we have 

EA - EB - EAB = 0   i.e. EAB = EA - EB           

Thus EAB  =   Eph  00 - Eph -1200 = Eph - Eph(- 0.5 - j 0.866) = Eph (1.5 + j 0.866) 

                 =   3  Eph  300                                                                                         (6.5) 

As seen from Eq. (6.5), │ EAB│ = 3  Eph  i.e.                           Eℓ = 3  Eph               (6.6) 

From Eqs. (6.4) and (6.6), we can state that, in the case of star-connected system, 

Line current, Iℓ  = Phase current, Iph 

Line voltage, Eℓ = 3  x Phase voltage = 3  Eph  
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Real power supplied by the three-phase generator = 3 x power per phase 

                                                                                 = 3 Eph Iph cos θ                          (6.8) 

Using the relations in Eq. (6.7),in the above            

Real power supplied by the three-phase generator = 3 3  Eph Iph cos θ      

                                                                                 = 3 Eℓ Iℓ cos θ                           (6.9) 

Thus, the power supplied by the star-connected three-phase generator can be 

calculated by using the phase quantities as in Eq. (6.8) or by using the line quantities as 

in Eq. (6.9). 

The generators, transformers and transmission lines in a three-phase system will have 

their own voltage ratings. The specified voltages associated with them are line voltages 

unless it is mentioned otherwise. 

 



6.3.2 THREE-PHASE GENERATOR WITH DELTA-CONNECTED WINDING 

Fig. below shows the windings of three-phase delta-connected generator, supplying 

power to a three-phase load.  

 

 

 

 

 

 

Line voltage, Eℓ = Phase voltage, Eph                                                                        (6.10) 
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(6.13) 

Taking the phase current IBC as reference, the phasor form of three phase currents IAB, 

IBC and ICA are shown in Fig. 6.6. 

 

 

 

 

 

 

Referring to Fig. 6.5, KCL at junction A gives 

IA = ICA - IAB = Iph (- 0.5 - j 0.866) - Iph(- 0.5 + j 0.866) = - j ph3 I                             (6.11) 

i.e. │IA│= ph3 I i.e.      Line current, Iℓ =  ph3 I                                                       (6.12) 

From Eqs. (6.10) and (6.12), we can state that, in the case of delta-connected system. 

Line voltage, Eℓ = Phase current, Eph                                                                                                                           

Line current, Iℓ = 3  x Phase current = 3  Iph  
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Fig. 6.6 Current phasors of phase currents in a delta system.  

IBC 

 



Real power supplied by the three-phase generator = 3 x power per phase 

                                                                                 = 3 Eph Iph cos θ                       (6.14) 

Using the relations in Eq. (6.13), in the above            

Real power supplied by the three-phase generator = 3  Eph 3  Iph cos θ      

                                                                                 = 3 Eℓ Iℓ cos θ                         (6.15) 

It is to be noted that Eqs. (6.14) and (6.15) are the same as Eqs. (6.8) and (6.9) Thus, 

the real power supplied by the three-phase generator, whether it is connected in star or 

in  delta, can be calculated by using the phase quantities as in Eq. (6.14) or by using 

the line quantities as in Eq. (6.15). 

In a three-phase system, whenever the value of supply voltage is given, it refers to line 

voltage unless it is specifically mentioned as phase voltage. 

 



 

Example 6.1    Each phase of a three-phase alternator, generates a voltage of 3810.5 V 

and can carry a maximum current of 30 A. Find the line current, line voltage and total 

kVA capacity, if the alternator is connected in (a) star (b) delta. 

Solution:     Given data: Eph = 3810.5 V; Iph = 30 A  

Star                                                                      Delta 

Line current Iℓ = Iph = 30 A                                   Line current Iℓ = 3  Iph = 51.9615 A 

Line voltage Eℓ = 3  Eph = 6600 V                     Line voltage Eℓ = 3810.5 V 

Total kVA = 3 Eℓ Iℓ                                             Total kVA = 3 Eℓ Iℓ 

               = 3 x 6600 x 30 x 10-3                                       = 3 x 3810.5 x 51.9615 x 10-3 

                = 342.95                                                     = 342.95 

 



6.4 BALANCED THREE-PHASE LOAD 

A three-phase load has three separate load impedances which may be connected in 

star or delta. When these three impedances are identical, then we say that the load is 

balanced; otherwise unbalanced. 

Delta-connected load is more common than star-connected load. This is due to the 

ease with which load may be added or removed from each phase of a delta-connected 

load. Changing the load is difficult with star-connected load because of non-availability 

of the neutral. 

When a three-phase balanced load is connected to a balanced three-phase supply, the 

analysis is simple. Because of perfect symmetry, there will not be current in the neutral 

wire. In this case, the three-phase circuit can be treated on single-phase basis. We first 

draw the single-phase equivalent and then work out the problem on per phase basis. 

Then, if necessary, three-phase quantities can be calculated. 

 



Example 6.2     A balanced three-phase load connected in star consists of (6 + j 8) Ω 

impedance in each phase. It is connected to a three-phase supply of 400 V, 50 Hz. Find 

(a) magnitude of phase current and line current (b) per phase power and (c) total power. 

Solution:                 

 

 

 

 

 

 

Given three-phase circuit and its single-phase equivalent are shown above. Referring to 

Fig. (b), Voltage Eph = 400 / 3  = 230.94 V;                     Z = (6 + j 8) Ω = 10 53.130 Ω 

(a) Phase current, Iph = 230.94 / 10 = 23.094 A 

     Line current, Iℓ = Iph = 23.094 A 

(b) Per phase power, P = Eph Iph cos θ = 230.94 x 23.094 x cos 53.130 = 3200 W 

(c) Total power, PT = 3  Eℓ Iℓ cos θ = 3  x 400 x 23.094 x cos 53.130 = 9600 W 

     Alternatively, total power, PT = 3 P = 9600 W 
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Example 6.3  Repeat the previous example with the load impedance connected in delta. 

Solution:     Balanced three-phase circuit and its single-phase equivalent are shown. 

 

 

 

 

 

 

Referring to Fig. 6.9 (b),  Voltage Eph = 400 V        Z = (6 + j 8) Ω = 10 53.130 Ω 

(a) Phase current, Iph = 400 / 10 = 40 A 

     Line current, Iℓ = 3  Iph = 69.282 A 

(b) Per phase power, P = Eph Iph cos θ = 400 x 40 x cos 53.130 = 9600 W 

(c) Total power, PT = 3  Eℓ Iℓ cos θ = 3  x 400 x 69.282 x cos 53.130 = 28800 W 

     Alternatively, total power, PT = 3 P = 28800 W 
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6.5 PHASE SEQUENCE 

Phase sequence is the order in which different phase voltages reach maximum values. 

In a three-phase system, two phase sequences, namely ABC and ACB, are possible. 

To indicate the phase sequence as ABC, any three consecutive letters in ABCAB may 

be used. Similarly, to specify the phase sequence as ACB, any three consecutive 

letters in ACBAC may be used. 

 

 

 

 

 

 

 

Phasor diagrams showing the phase and line voltage relationships for the two phase 

sequences ABC and ACB are shown in Figs. 6.10 and 6.11 respectively. Line to neutral 

voltages can be represented either by VAN, VBN and VCN or simply by VA, VB and VC. 
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VA is taken as reference                                       VBC is taken as reference   

VA is taken as reference                                       VBC is taken as reference   

Fig. 6.11 Phasor diagrams - Phase sequence ACB.   
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Fig. 6.10 Phasor diagrams - Phase sequence ABC.   
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Phase sequence is ABC: 

  

 

 

 

 

 

 

Phase sequence is ACB: 
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If the phase sequence is not specified, it is understood that the phase sequence is ABC. 

Phase sequence ABC is also referred as phase sequence RYB. 

It is to be noted that if the phase sequence is ABC, then, VB lags VA by 1200 and VC lags 

VB by 1200. Further, VBC lags by VAB by 1200 and VCA lags VBC by 1200. 

On the other hand if the phase sequence is ACB, then, VC lags VA by 1200 and VB lags 

VC by 1200.  Also the line voltage VCA lags VAB by 1200 and VBC lags VCA by 1200. 

Phase sequence can be easily remembered by considering the phasors as rotating 

vectors rotating in anti-clockwise direction. If the phase sequence is ABC, at any 

stationary point phasors pass through in the order A-B-C or AB-BC-CA. On the other 

hand if the phase sequence is ACB, at any stationary point, phasors pass through in the 

order A-C-B or AB-CA-BC 

 



From the phasor diagram 

it is noted VC is lagging VA. 

Hence phase sequence is 

ACB  

Fig. 6.12 Phasor diagrams - Example 6.4.   
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Example 6.4 

Determine the phase sequence of the set of voltages given by 

vAN = 400 cos (ωt - 100) V; vBN = 400 cos (ωt - 2500) V and vCN = 400 cos (ωt - 1300) V. 

Solution: 

Given voltage phasors are: 

VAN = 282.8 -100; VBN = 282.8 -2500 and  VCN = 282.8 -1300 

Phasors are shown in Fig. 6.12. 
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Example 6.5 

In a three-phase balanced supply, voltage VC = 110 650 V. Taking the phase 

sequence as ABC, find the phase and line voltages. 

Solution: 

     VA = VC x 1 - 1200 =110  - 550 V 

     VB = VC x 11200 = 110 1850 V 

     VC = 110650 V 

     VAB = VA - VB = 190.5 - 250 V 

     VBC = VB - VC = 190.5 - 1450 V 

     VCA = VC - VA = 190.5950 V 



Case 1: Unbalanced delta-connected load supplied by 3-wire system. 

Case 2: Unbalanced star-connected load supplied by 4-wire system. 

Case 3: Unbalanced star-connected load supplied by 3-wire system. 

 

Case 1: Unbalanced delta-connected load supplied by 3-wire system. 

Example 6.6    A three-phase 3-wire 240 V ABC system has a delta-connected load with 

impedances ZAB = 1000 Ω; ZBC = 10300 Ω and ZCA = 15 - 300 Ω. as shown. 

Taking VBC as reference, determine the line voltages, phase currents, line currents and 

draw the phasor diagram. Also calculate the real power consumed by the load. 

Solution:     Given line and phase voltages are: 

                  VBC = 24000 V  

                  VCA = 240 - 1200 V 

                  VAB = 240 - 2400 V 
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VBC = 24000 V; VCA = 240 -1200 V; VAB = 240 -2400 V;  

                    ZAB = 1000 Ω; ZBC = 10300 Ω and ZCA = 15 - 300 Ω 

Phase currents are: 
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Line currents are obtained by applying KCL at junction A, B and C. Thus 

IA = IAB - ICA = (- 12 + j 20.7846) - (- j 16) = (- 12 + j 36.7846) = 38.6925 108.070 A 

IB = IBC - IAB = (32.7846 - j 32.7846) = 46.3644 - 450 A 

IC = ICA - IBC = (- 20.7846 - j 4) = 21.166 - 169.110 A 
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Fig. 6.14 Phasor diagram - Example 6.6.   
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Phase voltages, phase currents and the line currents are shown in Fig. 6.14 

 

 

 

 

 

 

Real power consumed by the load can be calculated from the real power taken by the 

load in each phase. Noting that 

RAB = 10 Ω; RBC = 10 cos 300 = 8.6603 Ω and RCA = 15 cos 300 = 12.9904 Ω 

Real power consumed by the load = (242 x 10) + (242 x 8.6603) + (162 x 12.9904) 

                                                        = 14073.8 W = 14.0738 kW 



Case 2: Unbalanced star-connected load supplied by 4-wire system. 

When an unbalanced star-connected load whose neutral point is designated by O, is 

connected to a 4-wire balanced load with the neutral wire designated as N, there will be 

current in the neutral wire. Impedance of the neutral wire will be of negligible value as 

compared to the load. Hence, N and O will be at the same potential. 

Example 6.7 

A three-phase 4-wire, 208 V system has a star connected load with impedances          

ZA = 600 Ω; ZB = 6300 Ω and ZC = 5 450 Ω. Taking the voltage VAN as reference, 

determine line and neutral currents. Draw the phasor diagram. Also calculate the real 

power consumed by the load. 
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Fig. 6.16 Phasor diagram - Example 6.7.   
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Solution:     ZA = 600 Ω; ZB = 6300 Ω and ZC = 5 450 Ω 

Taking the phase sequence as ABC,  

VAN = 
3

208
00 V = 120.0889 00 V 

VBN = 120.0889 - 1200 V 

VCN = 120.0889 - 2400 V 

Currents are calculated as follows: 

IA = 
A
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Z

V
= 

006

120.0889


= 20.014800 A 
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B

BN
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


= 20.0148 -1500 A 

IC = 
C

CN

Z

V
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455

240-120.0889




= 24.0178 750 A 
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Use of KCL at O gives 

IN = - (IA + IB + IC) = (- 8.8978 - j 13.192) A = 15.9123 -1240 A 

In this case, N and O are electrically same point. Resistances in different phases are: 

RA = 6 Ω; RB = 6 cos 300 = 5.1962 Ω and RC = 3.5355 Ω. 

Real power consumed by the load  

                                           = (20.01482 x 6) + (20.01482 x 5.1962) + (24.01782 x 3.5355) 

                                           = 6524.58 W = 6.5246 kW 
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Fig. 6.18 Effect of 

displacement neutral voltage.  

Case 3: Unbalanced star-connected load supplied by 3-wire system. 

When an unbalanced star-connected load is connected to a 3-wire system, the 

connection diagram will be as shown in Fig. below. 

 

 

 

 

 

 

In this case, the system neutral N and the common point of the load O will not be at the 

same potential. The voltages across the three impedances VAO, VBO and VCO will vary 

considerably from the line to neutral voltages, depending upon the voltage of O with 

respect to N, as seen from Fig. 6. 18. VON, the voltage of load neutral O with respect to 

system neutral N, is known as displacement neutral voltage. 
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ZA = 6 Ω 

ZB = (5.1962 + j 3) Ω 

ZC = (3.5355 + j 3.5355) Ω 
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Example 6.8     A three-phase, 3-wire, 208 V, ACB system has star connected load with 

impedances  ZA = 600 Ω; ZB = 6 300 Ω and ZC = 5 450 Ω. Determine the line 

currents and the voltage across load impedances taking VBC as reference.   

Construct the voltage triangle and determine the displacement neutral voltage. 

 

Solution:     VBC = 20800 V;   VCA = 208 1200 V;  VAB = 208 - 1200 V 

Selecting two mesh currents I1 and I2 as shown, mesh current equations are: 
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ZB = (5.1962 + j 3) Ω 

 

ZC = (3.5355 + j 3.5355) Ω 

C 

B 

A 

O

' 

ZA 

ZC ZB 

N 

I1 

I2 

 

 

 

 

 

 

 

  














CBB

BBA

ZZZ-

Z-ZZ
 









2I

I1
 = 









BC

AB

V

V
 














6.5355j8.73173j-5.1962-

3j-5.1962-3 j11.1962









2I

I1
= 












0

0

0208

120-208

 

 Determinant of the coefficient matrix = 90.9323 48.580 
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From the mesh currents, line currents can be calculated: 

 
IA = I1 = (- 3.6109 - j 22.9797) A = 23.2617 - 98.930 A  
 

IB = I2 - I1 = (15.4071 - j 0.7647) A = 15.426 - 2.840 A 
 

IC = - I2 = (- 11.7974 + j 23.7446) A = 26.5139 116.420 A 
 

Voltages across the loads can be calculated as: 
 
VAO = ZA IA = (- 21.6654 - j 137.8782) A = 139.5702 - 98.930 V 

 
VBO = ZB IB = (82.3503 + j 42.2497) A = 92.556 27.160 V 

 
VCO = ZC IC = (-125.6599 + j 42.2404) A = 132.5695 161.420 V 
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(a).                                                                       (b) 

Fig. 6.20 Displacement neutral voltage - Illustration.   
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These voltage phasors are shown in Fig. 6.20 (a). 
 

 

 

 

 

 

 

 

 

Also, VAB, VBC, VCA and hence the system neutral N are located as shown in              

Fig. 6.20 (b).  Considering the voltage triangle ANO 

VON + VAO + VNA = 0  Thus displacement neutral voltage VON is given by 

VON = - VAO - VNA = - (- 21.6654 - j 137.8782) 
3

208
j  

        = (21.6654 + j 17.7893) V = 28.033 39.390 V 
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6.6.1 EXPRESSION FOR DISPLACEMENT NEUTRAL VOLTAGE 

Consider a star-connected load connected to a balanced three-wire supply as shown. 

 

 

 

 

 

 

Applying KCL at point O we get   IA + IB + IC = 0 i.e.                                                (6.16) 

YA VAO + YB VBO + YC VCO = 0                                                                                   (6.17) 

YC 

YA 

YB O

' 



YA VAO + YB VBO + YC VCO = 0                                                                                   (6.17) 

Recalling that Vab = Vac - Vbc, voltages VAO, VBO and VCO can be written as 

VAO = VAN - VON; VBO = VBN - VON;        VCO = VCN - VON                                        (6.18) 

Substitution of the above in Eq. (6.17) results in 

YA (VAN - VON) + YB (VBN - VON) + YC (VCN - VON) = 0 i.e. 

YA VAN + YB VBN + YC VCN = (YA + YB + YC) VON. 

Thus Displacement neutral voltage VON = 
CBA

CNCBNBANA

YYY

VYVYVY




                    (6.19) 

VAN, VBN and VCN are known from the supply system. Once we calculate the voltage 

VON from Eq. (6.19), load voltages VAO, VBO and VCO can be calculated from Eq. (6.18). 

Then, using the load admittances, the currents IA, IB and IC can be calculated. 
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Example 6.9 

For the system described in the previous example, first determine the displacement 

neutral voltage and hence compute the line currents. 

Solution: 

Referring to the phasors in Fig. 6.20 (b) 

VAN = 090
3

208
  = 120.0889  - 900 V 

VBN = 120.0889300 V and VCN = 120.0889 1500 V 

Load admittances are: 

YA = 0.166700 = (0.1667 + j 0)  

YB = 0.1667 - 300 = (0.1443 - j 0.0833)  

YC = 0.2 - 450 = (0.1414 - j 0.1414)  

Thus, YA + YB + YC = (0.4524 - j 0.2447)  

 

 

 

 



Also, 

YA VAN = 20.0188 - 900 = - j 20.0188   

YB VBN = 20.018800 = 20.0188  

 YC VCN = 24.01781050 = - 6.2163 + j 23.1994 

Displacement neutral voltage  

VON = 
CBA

CNCBNBANA

YYY

VYVYVY




= 

0.2247j0.4524

 3.1806j 13.8025




 

       = 28.042439.390 V = (21.6724 + j 17.7956) V 



Now, the load voltages are calculated as  

VAO = VAN - VON = - j120.0889 - (21.6724 + j 17.7956) 

                          = (- 21.6724 - j 137.7956) V= 139.5773 - 98.930 V 

VBO = VBN - VON = (104.0 + j60.0445 - (21.6724 + j 17.7956) 

                          = (82.3276 + j 42.2489) V= 92.5354 27.170 V 

VCO = VCN - VON = (- 104.0 + j60.0445 - (21.6724 + j 17.7956) 

                          = (- 125.6724 + j 42.2489) V= 132.5840 161.420 V 

Multiplying these load voltages and the corresponding load admittances, line      

currents  are computed as 

IA = 139.5773 - 98.930 x 0.166700 = 23.2675 - 98.930 A 

IB = 92.535427.170 x 0.1667 - 300 = 15.4257 - 2.830 A 

IC = 132.5840161.420 x 0.2 - 450 = 26.5168 116.420 A 

These results agree with the results obtained in the previous example. 



Fig. 6.27 Power measurement - Three wattmeters.   

6.8 MEASUREMENT OF POWER IN THREE-PHASE SYSTEM 

For measuring the power consumed by a three phase load, three wattmeters can be 

connected as shown in Fig. 6.27. Here, each wattmeter measures the real power of the 

respective phase.  

 

 

 

 

  

 

 

If W1, W2 and W3 are the readings of the wattmeters, then total real power consumed by 

the three phase load is given by 

P = W1 + W2 + W3                                                                                                      (6.35) 
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This method of measuring three-phase power can be used whether the load is balanced 

or not. However, there are certain practical difficulties in this method of measuring 

three-phase power. They are, 

1. Sometime the neutral point in the star-connected load may not be readily 

available. 

2. Usually it is not possible to cut through the delta-connected load to introduce the 

current coil. 

Because of these difficulties, the application of this method is limited. 

 



6.9 MEASUREMENT OF THREE-PHASE POWER BY TWO-WATTMETER 

 METHOD 

Two-wattmeter method can be used to measure the real power consumed by three-

phase load. The merits of this method are 

1. The three-phase load can be balanced or unbalanced. 

2. The three-phase load can be connected in either star or delta. 

3. Neutral point of star-connected load is not required to connect the wattmeters.  

4. There is no need to cut open the delta-connected load to introduce the current 

 coil.  

5. The power factor of the balanced load can be calculated from the two wattmeter 

 readings. 



Fig. 6.28 Two wattmeter method - Star-connected balanced load.   

6.9.1 MEASUREMENT OF POWER CONSUMED BY STAR-CONNECTED 

BALANCED LOAD 

Consider star-connected balanced load connected to a three-phase supply. Fig. 6.28 

(a) shows the physical connection of two wattmeters. 

 

 

 

 

 

 

 

 

 

Let us assume that the load is inductive having an impedance angle of θ. Let Vph and 

Iph be the magnitudes of phase voltage and phase current respectively.  

(a)                                                                                    (b)       
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In wattmeter 1, the voltage across the pressure coil is VAB and the current in the current 

coil is IA. In wattmeter 2, the voltage across the pressure coil is VCB and the current in 

the current coil is IC. 

 

W1 = │VAB│ │ IA│ cos (angle between VAB and IA) 

W2 = │VCB│ │ IC│ cos (angle between VCB and IC) 

 

 

The phasor diagram, taking voltage VA as reference is shown in Fig. 6.28 (b). The 

phasors VAB, VCB, IA and IC are indicated. Thus, 

VA = Vph 00,          VB = Vph -1200       and        VC = Vph -2400                        (6.36) 

Voltage VAB = VA - VB =  Vph 300 V                                                                   (6.37) 

Voltage VCB = VC - VB =  Vph 900 V                                                                   (6.38) 
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VAB = VA - VB =  Vph 300 V;                      VCB = VC - VB =  Vph 900 V      

Knowing the impedance angle as θ, 

Current IA = Iph - θ0 and current IC = Iph 120 - θ0                                           (6.39) 

Wattmeter reading W1 = │VAB│ │ IA│ cos (angle between VAB and IA) 

                           =  Vph Iph cos [300 - (-θ)]   =  Vph Iph cos(θ + 300)               (6.40)    

Wattmeter reading W2 = │VCB│ │ IC│ cos (angle between VCB and IC) 

                          =  Vph Iph cos [90 - (1200 - θ)]  =  Vph Iph cos(θ - 300)          (6.41) 

From the above two equations, 

W1 + W2 =  Vph Iph [cos θ  cos 300 - sin θ  sin 300 + cos θ  cos 300 + sin θ  sin 300] 

               =   Vph Iph 2 cos θ  cos 300   = 3 Vph Iph cos θ       

               = Total three-phase real power consumed by the load                              (6.42) 
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Fig. 6.29 Two wattmeter method - Delta-connected balanced load.   

 6.9.2 MEASUREMENT OF POWER CONSUMED BY DELTA-CONNECTED 

 BALANCED LOAD 
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Fig. 6.29 (a) shows the physical connection of wattmeters corresponding to delta-

connected balanced load. It is assumed that the load is inductive with an impedance 

angle of θ. Let Vph and Iph be the magnitudes of phase voltage and phase current 

respectively.  

In wattmeter 1, the current through the current coil is IA and the voltage across the 

pressure coil is VAB. In wattmeter 2, the current through the current coil is IC and the 

voltage across the pressure coil is VCB. 

The phasor diagram, taking current IBC as reference is shown in Fig. 6.25 (b). The 

phasors VAB, VCB, IA and IC are indicated. Thus, 

IBC = Iph 00, ICA = Iph -1200 and IAB = Iph -2400                                             (6.43) 

Current IA = IAB - ICA =  Iph 900;  Current IC = ICA - IBC =  Iph 2100 

  

3  3 

 



 IA = IAB - ICA =  Iph 900;                                     IC = ICA - IBC =  Iph 2100 

Knowing the impedance angle as θ, 

Voltage VAB = Vph θ + 1200  and voltage VCB = - VBC = - Vph θ  = Vph θ + 1800  

 Wattmeter reading W1 = │VAB│ │ IA│ cos (angle between VAB and IA) 

                      =  Vph Iph cos [θ + 1200 - 900]  =  Vph Iph cos(θ + 300)              (6.44)    

Wattmeter reading W2 = │VCB│ │ IC│ cos (angle between VCB and IC) 

                          =  Vph Iph cos [θ + 1800 - 210]  =  Vph Iph cos(θ - 300)          (6.45) 

The above two equations are the same as those obtained in the case of star-connected 

balanced load. Therefore, on simplification, we get 

W1 + W2 = 3 Vph Iph cos θ  

              = Total three-phase real power consumed by the load                       (6.46)  

Thus, irrespective of whether the load is connected in star or delta, sum of the readings 

of the two wattmeter readings will give the total real power consumed by the three-

phase load. 
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6.9.3 POWER FACTOR OF BALANCED LOAD IN TERMS OF WATTMETER 

READINGS 

Power factor of the balanced three-phase load can be calculated from the two wattmeter 

readings.  

Wattmeter reading W1 =  Vph Iph cos(θ + 300)     (6.40) 

Wattmeter reading W2 =  Vph Iph cos(θ - 300)      (6.41) 

Therefore, 

 W2 - W1 =  Vph Iph [cos θ  cos 300 + sin θ  sin 300 - cos θ  cos 300 + sin θ  sin 300] 

               =  Vph Iph 2 sin θ  sin 300  = Vph Iph sin θ                                       (6.47) 

We know that,  W1 + W2 = 3 Vph Iph cos θ                                                             (6.48) 

Therefore,            Thus,    tan θ =                (6.49) 

Power factor, cos θ = cos   tan-1( )                                              (6.50) 
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Sign of wattmeter readings   

Reactive power Q 

Reactive power, Q = 3 Vph  Iph  sin θ                                                                         (6.51) 

Knowing that W2 - W1 = Vph Iph sin θ           (6.47) 

Reactive power, Q =  (W2 - W1)                                                                          (6.53) 

  

W1 =  Vph Iph cos(θ + 300)                              

W2 =  Vph Iph cos(θ - 300) 

For inductive load, wattmeter reading  

W1 is positive for 0 ≤ θ ˂ 600;     W1 is zero for θ = 600;    W1 is negative for θ ˃ 600 

W2 is always positive;       Always W2 ≥ W1;           W2 = W1 for θ = 0 

 

When the load is capacitive, wattmeter readings W1 and W2 get interchanged as 

compared to those of inductive load. 
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Example 6.14 

The power input to a 2000 V, 50 Hz, 3-phase motor is measured by two wattmeters 

which indicate 100 kW and 300 kW respectively. Calculate (a) the input power (b) the 

power factor and (c) the line current. 

Solution: 

(a) W1 = 100 kW and W2 = 300 kW;        Input power P = W1 + W2 = 400 kW 

(b) tan θ = 

 

 θ = 40.89340;         cos θ = 0.7559;     Power factor = 0.7559 lagging 

(c) Three-phase power, P =  Vℓ Iℓ cos θ 

Line current, Iℓ =  

0.8660
400

200
x3

WW

WW
3

21

12 




3

A152.76
0.7559x2000x3

10x400 3





 Example 6.15 

Two wattmeters are connected to measure the power in a 3-phase 3-wire balanced 

load. Determine the total power and power factor, if the two wattmeters read (a) 1000 W 

each, both positive and (b) 1000 W each of opposite sign. 

Solution: 

(a) W1 = 1000 W;    W2 = 1000 W;     Total power P = W1 + W2 = 2000 W 

tan θ = 

 

Power factor = cos 00 = 1.0 

(b) W1 = - 1000 W;    W2 = 1000 W;     Total power P = W1 + W2 = 0 

tan θ = 
21

12

WW

WW
3




 =  ; Power factor angle θ = 900;  

Power factor = 0 lagging. 

0θ angle factor Power0;
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Example 6.16 

Across 400 V, 3-phase supply mains, a star-connected balanced load of (16 + j 12) Ω 

impedance is connected. (a) Taking VA as reference, determine the line currents and 

the power absorbed by the load. (b) If two wattmeters are used to measure the power, 

what will be the readings of the wattmeters? 
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(a) VA = ;       Z = (16 + j 12) = 20 36.870 Ω 

 Line currents are: 

 IA = ; IB = 11.547 - 156.870 A:  IC =11.547 83.130 A 

 Total power P =  Vℓ Iℓ cos θ =  x 400 x 11.547 cos 36.870 = 6400 W 

(b) W1 =  Vph Iph cos(θ + 300) =  x 230.9401 x 11.547 cos 66.870 = 1814.35 W 

 W2 =  Vph Iph cos(θ - 300) =  x 230.9401 x 11.547 cos 6.870 = 4585.64 W 
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Fig. 6.32 Two wattmeter method - Star-connected unbalanced load.   

6.10 POWER MEASUREMENT IN UNBALANCED THREE-PHASE LOAD 

Total power consumed by three-phase unbalanced load also can be measured using 

two wattmeter method. 

6.10.1 STAR-CONNECTED UNBALANCED LOAD 

Fig. 6.32 shows the physical connections of two wattmeters to measure the power 

consumed by a three-phase star-connected unbalanced load. 
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At any instant of time, the total power supplied to the load is given by 

p = vAO iA + vBO iB + vCO iC                                                                                          (6.59) 

Note that iA + iB + iC = 0 and current iB is not used in wattmeter readings 

iB = - iA - iC.                                                                                                                 (6.60) 

Therefore, 

p = vAO iA + vBO (- iA - iC) + vCO iC  = (vAO - vBO) iA + (vCO - vBO) iC 

   = vAB iA + vCB iC                                                                                                                                                           (6.61) 

From the above equation, 

Average power P = │VAB││IA│ cos (angle between VAB and IA) + 

                                │VCB││IC│ cos (angle between VCB and IC)                              (6.62) 

It is clear from the diagram in Fig. 6.32 that in wattmeter 1, the voltage across the 

pressure coil is VAB and the current through the current coil is IA. Further, in wattmeter 2, 

the voltage across the pressure coil is VCB and the current through the current coil is IC. 

Therefore, wattmeter readings will be 

 



It is clear from the diagram in Fig. 6.32 that in wattmeter 1, the voltage across the 

pressure coil is VAB and the current through the current coil is IA. Further, in wattmeter 2, 

the voltage across the pressure coil is VCB and the current through the current coil is IC. 

Therefore, wattmeter readings will be 

W1 = │VAB││IA│ cos (angle between VAB and IA)                                                     (6.63)            

W2 = │VCB││IC│ cos (angle between VCB and IC)                                                     (6.64) 

Therefore, average power consumed by the load 

P = W1 + W2                                                                                                              (6.65) 

Thus, the two wattmeters connected as shown will measure the total average power 

consumed by the three-phase unbalanced load. 

 



Fig. 6.33 Two wattmeter method - Delta-connected unbalanced load.   

6.10.2 DELTA-CONNECTED UNBALANCED LOAD 

 

 

 

 

 

 

 

When the unbalanced load is connected in delta, the two wattmeters are connected as 

shown in Fig. 6.33. Now, at any instant of time vAB + vBC + vCA = 0. Voltage vCA is not 

used in wattmeter reading. 

vCA = - (vAB + vBC)                                                                                                      (6.66) 

Instantaneous power is given by 

p = vAB iAB + vBC iBC + vCA iCA  = vAB iAB + vBC iBC - (vAB + vBC) iCA 

   = vAB (iAB - iCA) + vBC (iBC - iCA)  = vAB (iAB - iCA) + vCB (iCA - iBC)  

   = vAB iA + vCB iC                                                                                                       (6.67) 
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Instantaneous power is given by 

p = vAB iAB + vBC iBC + vCA iCA  = vAB iAB + vBC iBC - (vAB + vBC) iCA 

   = vAB (iAB - iCA) + vBC (iBC - iCA)  = vAB (iAB - iCA) + vCB (iCA - iBC)  

   = vAB iA + vCB iC                                                                                                       (6.67) 

The above equation is the same as Eq. (6.46) in the previous case. Thus as discussed 

earlier, average power consumed by the load can be obtained as 

P = W1 + W2                                                                                                              (6.68) 

Therefore, it can be concluded that two wattmeters properly connected, always 

measure the total power consumed by the three-phase load, irrespective of the load is 

balanced or unbalanced and the load is star-connected or delta-connected. 

It is to be noted that the power factor is not defined for three-phase unbalanced load. 

 



Example 6.22 

In  the  two wattmeter method,  wattmeter  readings  are noted  as - 100 W and   300 W. 

Find the total real power, power factor and the total reactive power. 

Solution: 

P = - 100 + 300 = 200 W 

tan θ = 0

21

12 73.8979θ3.4641;
200

400
3
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WW
3 


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Power factor = cos θ = 0.2774 lagging 

Q = 3  (W2 - W1) = 3  x 400 = 692.82 VAR 



Example 6.23 

For a purely inductive load, wattmeter 2 in the two wattmeter method indicates 520 W. 

What will be the reading of wattmeter 1? 

Solution: 

For purely inductive load, P = 0. i.e. W1 + W2 = 0 Thus W1 = - W2 = - 520 W 



Example 6.24 

Two  wattmeters  are  used  to measure  power  consumed  by  a three-phase balanced 

inductive  load.  The  wattmeter  readings  are  663 W  and 5097 W. Find (a) total power    

(b) power factor of the load (c) phase current if the phase voltage is 400 V. 

Solution: 

W1 = 663 W; W2 = 5097 W 

(a)  Total power = 663 + 5097 = 5760 W 

(b)  tan θ = 0
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5760

4434
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           Power factor = 0.6 lagging 

(c)       3 x 400 x Iph x 0.6 = 5760 

 Current Iph = 8 A 



Example 6.25 

The  reading  of  two wattmeters  to measure power in a three-phase capacitive load are 

800 W and - 300 W. Calculate (a) input power (b) power factor of the load.  

Solution: 

W1 = 800 W; W2 = - 300 W 

Input power P = W1 + W2 = 500 W 

tan θ = 0

21
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Power factor = 0.2538 leading 



9.1 INTRODUCTION TO NETWORK TOPOLOGY 

A network consists of elements such as 

i)     Voltage source 

ii)    Current source 

iii)    Resistance 

iv)    Inductance 

v)    Capacitance and 

vi)    Transformer 

Network topology concerns itself with the manner in which the various elements are 

grouped and interconnected. 

In the network topology, each element in a network is represented merely by a line with 

small circles or dots at the two ends denoting the terminals as shown in Fig. 9.1. 

 

  
Fig. 9.1 Representation of an element. 



9.2 GRAPH 

Graphical portrayal, showing the geometric interconnection of elements of the network 

is called the GRAPH of the given network. Fig. 9.2 shows a network and the 

corresponding graph. 

 

 

 

 

 

Fig. 9.2 A network and its graph. 
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A node is the meeting point of two or more elements. 

A sequence of elements travelled from one node to another is called a PATH. 

If there exists at least one path from each node in the graph to every other node of the 

graph, the graph is said to be CONNECTED or said to be in one PART; otherwise the 

graph is UNCONNECTED or in more than one part.  

The graph shown in Fig. 9.2, has seven elements and five nodes. In this 

4-2-3 is the path from node 1 to 3. 

4-5 is a path from node 1 to 3.  

2-3-7 is a path from node 2 to 5. 

5-7 is a path from node 2 to 5. 

7 6 

5 4 

3 
2 

1 

5 

4 

3 

2 

1 



If the elements in a graph are assigned orientations, the resulting graph is called 

ORIENTED GRAPH. Fig. 9.3 shows an oriented graph. 

 

 

 

 

 

 

 

 

In a network having N nodes, one node can be designated as reference node and it 

may be marked as node 0. If so, other nodes are numbered as 1, 2, …. , N-1. 
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Fig. 9.3 Oriented graph. 



9.2.1 SUB-GRAPH 

For a graph G, a sub-graph G1 is a collection of elements and nodes of G, such that 

every element and node of G1 is contained in G. The number of elements in a sub-

graph may be just as few as one or as many as all those in G. A sub-graph may be 

connected or unconnected. 

9.3 TREE AND CO-TREE 

TREE of a connected graph is defined as a sub-graph that contains a set of 

elements, which together, connects all the nodes of the graph, without forming 

any closed loop. 

In general, a graph has more than one tree. The elements of a tree are called TREE 

BRANCHES. 

The set of all the remaining elements of the graph, which are not in the tree, form the 

compliment of the tree and is known as CO-TREE. The elements of a co-tree are called 

LINKS. Links are also called CHORDS. Co-tree of a graph need not be a connected 

graph. 



Consider the network graph shown in Fig. 9.4. 

 

 

 

 

  

For this network graph, one of the trees and the corresponding co-tree are shown in  

Fig. 9.5. 
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Fig. 9.5 A tree and the corresponding co-tree of a network graph. 
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Fig. 9.4 A sample network 

graph. 



 

 

 

 

 

 

 

 

 

Elements 3, 4 and 6 are the tree branches. Elements 1, 2 and 5 are the links. 

Each time we add a link to the tree, a closed loop will be formed. 

The following are the characteristics of a tree. 

1. Tree contains all the nodes in the graph. 

2. It does not have any closed loop. 

3. There exists a path from any one node to every other node. 
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To make our ideas more clear, we may consider another network graph shown. 

 

 

 

 

 

 

 

Three possible trees of the graph are shown in Fig. 9.7 (some more trees are also 

possible). 
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Fig. 9.6 A sample network graph. 
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Fig. 9.7 Three possible trees of network graph shown in Fig. 9.6. 

(a)                                                 (b)                                             (c) 



Tree branches and the links of the three trees shown in Fig. 9.7, are given in Table 9.1. 

 

TABLE 9.1 Tree branches and the corresponding links. 

Fig. Tree branches Links 

9.7 (a) 1, 2 and 3 4, 5 and 6 

9.7 (b) 2, 4 and 6 1, 3 and 5 

9.7 (c) 3, 4 and 5 1, 2 and 6 

 

If there are n elements and N nodes in the network graph, then 

Number of tree branches = N - 1. 

Hence, number of links = n - (N - 1) = n - N + 1 

Each time when a link is added to the tree, one loop is formed. Thus,  

Number of independent loops = n - N + 1 



A CUT-SET is a set of elements that, if removed, divides a connected graph into two 

connected graphs. 

 

Consider the oriented connected graph shown in Fig. 9.8. 
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Fig. 9.8 Oriented connected graph. 
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Elements 1, 2, 5 and 7 constitute a cut-set as removal of these elements will result in 

two connected sub-graphs as shown in Fig. 9.9.  

 

 

 

 

 

 

 

 

 

Elements 1, 6 and elements 2, 3, 6 are examples of two other cut-sets. It is possible to 

identify more cut-sets. 

6 5 4 

3 

5 

4 3 
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1 

Fig. 9.9 Illustration of a cut-set. 

7 

Sub-graph 1 consists 

of element 6. 

Sub-graph 2 consists 

of elements 3 and 4. 



A unique independent group of cut-sets may be chosen if each cut-set contains only 

one tree branch. Such independent cut-sets are called BASIC CUT-SETS. The number 

of basic cut-sets is equal to the number of tree branches. Orientation of a basic cut-set 

is chosen to be the same as that of the corresponding tree branch. Basic cut-sets will 

be different for different tree selected. 

To explain the basic cut-sets, we need to consider a tree of the graph. Consider the tree 

consisting of elements 1, 2, 3 and 4 as shown in Fig. 9.10. 

 

 

 

 

 

 

 

 

 

There are 4 tree branches. 

Thus there will be 4 basic cut-sets 

Fig. 9.10 Tree of a graph. 
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Corresponding to each and every tree branch, there will be one basic cut-set. 

Orientation of basic cut-set is the same as the orientation of the corresponding tree 

branch. Fig. 9.11 shows the four basic cut-sets A , B, C and D corresponding to the tree 

marked in Fig. 9.10. 

 

 

 

 

 

 

 

 

 

 

Fig. 9.11 Basic cut-sets. 

D 

C 
B A 

6 5 4 

3 

5 

4 3 

2 

1 

2 

1 

7 



It is possible to express the element voltages in terms of the tree branch voltages. Let 

v1, v2, …., v7 be the voltages of elements 1, 2, ….., 7. Let e1, e2, e3 and e4 be voltages of 

the tree branches 1, 2, 3 and 4.These voltages are marked in Fig. 9.12. 

 

 

 

 

 

 

 

 

 

It is obvious that 

v1 = e1;       v2 = e2;        v3 = e3      and       v4 = e4 

Fig. 9.12 Tree branch and element voltages. 

-      v7    + 

-      v6    + -    v5   + v4 = e4 
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v3 = e3 
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v2 = e2 
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v1 = e1 
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Further, using KVL, other element voltages can be obtained in terms of the tree branch 

voltages as given below. 

v5 = e4 + e3 - e2   

v6 = e2 - e1   

v7 = e3 - e2 

-      v6    + -    v5   + v4 = e4 

- + 

v3 = e3 

- 

+ 
v2 = e2 

- 

+ 

v1 = e1 

5 

4 3 

2 

1 

+ 

- 

-    v7   + 



Thus, the element voltages are:  

v1 = e1;       v2 = e2;        v3 = e3      and       v4 = e4 

v5 = e4 + e3 - e2   

v6 = e2 - e1   

v7 = e3 - e2 

The above relations can be shown as in Table 9.2 which is referred as CUT-SET 

SCHEDULE. 

TABLE 9.2 Cut-set schedule. 

Tree branch 

voltages 

Element voltages 

v1 v2 v3 v4 v5 v6 v7 

e1 1 0 0 0 0 -1 0 

e2 0 1 0 0 - 1 1 -1 

e3 0 0 1 0 1 0 1 

e4 0 0 0 1 1 0 0 

 

Each element Voltage can be read: 

For example, v5 = e4 + e3 - e2 



A TIE-SET is a set of elements that from a closed loop 

Consider the oriented graph shown in Fig. 9.13. Set of elements 1, 6, 2 and 2, 5, 4, 3 

are examples two tie-sets as each set of elements form a closed loop. It is possible to 

identify more number of tie-sets. 
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Fig. 9.13 Oriented connected graph. 
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A unique independent group of tie-sets may be chosen if each tie-set contains only one 

link. Such independent tie-sets are called BASIC TIE-SETS.  

The number of basic tie-set is equal to the number of links. Orientation of a basic tie-set 

is chosen to be the same as that of its link. Basic tie-sets will be different for different 

tree selected. 

Basic tie-sets depend on the tree selected. Let us consider a tree consisting elements 

6, 2, 3 and 4. This tree is shown in Fig. 9.14. 
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Fig. 9.14 A tree and co-tree of a  connected graph. 

7 

There are 3 links. 

Thus, there are 3 basic tie-sets 

  



Corresponding to one link, there will be one basic tie-set. Orientation of basic tie-set 

is the same as the orientation of the corresponding link. Fig. 9.15 shows the three 

basic tie-sets A, B and C corresponding to the tree marked in Fig. 9.14. 

 

 

 

 

 

 

 

 

 

It is possible to express the element currents in terms of the link currents. Let i1, i2, 

…., i7 be the currents in elements 1, 2, ….., 7. . Let iA, iB,  and iC be the link currents in 

links A, B and C respectively. It is obvious that 

i1 = iA  i5 = iB  i7 = iC 
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B 
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Fig. 9.15 Basic tie-sets. 
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i1 = iA  i5 = iB  i7 = iC 

Using KCL, other element currents can be expressed in terms of the link currents as 

shown below. 

 

 

 

 

 

 

The above relations can be shown as in Table 9.3 which is referred as TIE-SET 

SCHEDULE. Here elements are arranged in the order 1, 5, 7, 2, 3, 4 and 6. 

TABLE 9.3 Tie-set schedule. 

Link 

currents 

Element currents 

i1 i5 i7 i2 i3 i4 i6 

iA 1 0 0 -1 0 0 1 

iB 0 1 0 1 - 1 -1 0 

iC 0 0 1 1 -1 0 0 

 

i2 = - iA + iB + iC 

i3 = - iB - iC 

i4 = - iB 

i6 = iA 

 

 

 

 

 

 

  

C 

B 

A 6 5 4 
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7 

i2 = - iA + iB + iC 

 

 

 

 



Example 9.1 

Consider the oriented graph shown in Fig. 9.16. 

 

 

 

 

 

 

(a) How many elements and nodes are there? 

(b) Number the elements and nodes. Draw two different trees and give the element 

numbers of tree branches and links.  

Fig. 9.16 Oriented graph for Example 9.1. 



Solution 

(a) Given graph has 7 elements and 5 nodes. 

(b) One way of numbering the elements and nodes is shown in Fig. 9.17. 
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Fig. 9.17 Oriented graph with element and node numbers. 



Two different trees are shown in Fig. 9.18. 
 

 

 

 

 

 

 

For the tree shown in Fig. 9.18 (a):                      For the tree shown in Fig. 9.18 (b): 

Tree branches are 1, 3, 5 and 6                          Tree branches are 3, 4, 6 and 7 

Links are 2, 4 and 7.                                            Links are 1, 2 and 5. 

7 

6 

5 

4 
3 

2 

1 

4 

2 

1 

5 

3 

7 

6 

5 

4 
3 

2 

1 

4 

2 

1 

5 

3 

(a) 
Fig. 9.18 Two different trees 

(b) 



Example 9.2 

For the network graph shown in Fig. 9.19, taking elements 5, 6, 7 and 8 as tree 

branches obtain the cut-set and tie-set schedules. 
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Fig. 9.19 Oriented graph for Example 9.2. 



Solution 

 

 

 

 

 

 

 

  

 

Tree branches and the links are shown in Fig. 9.20 

Fig. 9.20 Tree branches and links - Example 9.2. 
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Let v1, v2, v3, v4, v5, v6, v7 and v8 be the element voltages and e5, e6, e7 and e8 be the 

tree branch voltages. 

Element and tree branch voltages are shown in Fig. 10.21. 

 

 

 

 

 

 

 

 

 

 

Referring to Fig. 10.21 

v5 = e5   v1 = - e5 + e6 

v6 = e6   v2 = - e6 - e7 

v7 = e7   v3 = e7 + e8 

v8 = e8   v4 = - e8 + e5 

Fig. 10.21 Element and tree branch voltages - Example 10.2. 
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Referring to Fig. 9.21                                     Cut-set schedule is  

v5 = e5   v1 = - e5 + e6 

v6 = e6   v2 = - e6 - e7 

v7 = e7   v3 = e7 + e8 

v8 = e8   v4 = - e8 + e5 

 

Basic tie-sets are shown in Fig. 9.22. 

 

 

 

 

 

 

 

 

 

Tree branch 
voltages 

Element voltages 

v1 v2 v3 v4 v5 v6 v7 v8 

e5 -1 0 0 1 1 0 0 0 

e6 1 -1 0 0 0 1 0 0 

e7 0 -1 1 0 0 0 1 0 

e8 0 0 1 -1 0 0 0 1 

D C 

B A 

Fig. 9.22 Basic tie-sets - Example 9.2. 
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Let i1, i2, i3, i4, i5, i6, i7 and i8 be the element currents and iA, iB, iC and iD be the link 

currents. 

Referring to Fig.10.22 

i1 = iA   i5 = iA - iD 

i2 = iB   i6 = - iA + iB 

i3 = iC   i7 = iB - iC 

i4 = iD   i8 = - iC + iD 

Tie-set schedule is  

Link 
currents 

Element currents 

i1 i2 i3 i4 i5 i6 i7 i8 

iA 1 0 0 0 1 -1 0 0 

iB 0 1 0 0 0 1 1 0 

iC 0 0 1 0 0 0 -1 -1 

iD 0 0 0 1 -1 0 0 1 
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φ11 

φ12 φ21 

φ22 

i1 
i2 

φ11 

φ12 φ21 

φ22 i1 
i2 

4.13.4 DOT CONVENTION - MAGNETICALLY COUPLED CIRCUIT 

 

 

 

 

 

 

φ21 = Part of φ11 that links both the coils 1 and 2 

φ12 = Part of φ22 that links both the coils 1 and 2 

 

In the first case mutual fluxes φ21 and φ12 are aiding each other. 

In the second case mutual fluxes φ21 and φ12 are opposing each other. 

 

The sign of mutual inductance depends on the winding direction and the current 

direction. Dot convention is used to provide the necessary information. 

  
 

 



In the dot convention, depending on the physical orientation of the coils, in each coil, a 

dot is placed at one end of the terminal, such that positive currents flowing into both the 

dots or positive currents flowing out of both the dots will result in mutual fluxes aiding 

each other. This implies that the voltage due to mutual inductance, will have the same 

sign as the voltage due to self inductance. Such a case is shown in Fig. 4.79 (a) along 

with the corresponding representation of coils in the circuit. 

On the other hand, if a positive current in one coil flows into the dot and the positive 

current in the other coil flows out of the dot, then the mutual fluxes are opposing each 

other. This implies that the voltage due to mutual inductance, have sign opposite of the 

voltage due to self inductance. This case is shown in Fig. 4.79 (b) along with the 

corresponding representation of coils in the circuit. 

 

  

 

 

 

(a)                                                                               (b)  
Fig. 4.79 Sign for Mutual inductance.  
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While writing the voltage equations of each mesh, corresponding to each inductance, 

we need to consider two terms, one due to self inductance and the other due to mutual 

inductance. 

Example 4.39 

Write the mesh current equations for the circuit shown in Fig. 4.80. Take the initial 

voltage across the capacitor as zero. 

 

 

 

 

Solution: 

The mesh current equations are: 

R1 i1 + R2 (i1 - i2) + L1 )i(i
dt

d
21   - M 

dt

di2  = e 

L2 
dt

di2 + M )i(i
dt

d
12   + 

t

0

'

2 dti
C

1
+ L1 )i(i

dt

d
12  + M 

dt

di2 + R2 (i2 - i1) = 0 

~ 

Fig. 4.80 Circuit for Example 4.39.  



Example 4.40     Two coils of self inductances L1 and L2 which are mutually coupled 

with mutual inductance M are connected in series. Show that, depending on the type of 

series connection, the equivalent inductance is either L1 + L2 + 2 M or L1 + L2 - 2 M. 

Solution:   Two types of series connection of the coils are shown in Fig. 4.81 (a) and (b). 
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Case 1                                                                           Case 2  

Fig. 4.81 Mutually coupled coils - Example 4.40.  
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Consider circuit shown in Case 1. Mesh current equation is 

          L1 
dt

di
 + M 

dt

di
+ L2 

dt

di
+ M 

dt

di
 = e  i.e.  (L1 + L2 + 2 M) 

dt

di
 = e 

          Thus the equivalent inductance is obtained as   Leq = L1 + L2 + 2 M 

          Consider circuit shown in Case 2. Its mesh current equation is 

          L1 
dt

di
 - M 

dt

di
+ L2 

dt

di
- M 

dt

di
 = e  i.e.  (L1 + L2 - 2 M) 

dt

di
 = e 

          Thus the equivalent inductance is obtained as    Leq = L1 + L2 - 2 M 

~ 

~ ~ 



0.8 H 0.3 H 

0.3 H 
0.8 H 

i1 i2 

e1 

- 

+ 

e1 

i1 

Leq 

- 

+ 

Example 4.42     Obtain the equivalent inductance of the two inductors connected as 

shown in Fig. 4.82. Take the coefficient of coupling k as 0.7. 

 

 

 

 

Solution: 

Let us apply a voltage e1 across the parallel combination as shown in Fig. 4.83 (a) 

whose equivalent circuit is shown in Fig. 4.83 (b). 

 

 

 

 

Fig. 4.82 Mutually coupled coils for Example 4.42.  

~ 

(a)                                                                                 (b)  

Fig. 4.83 Mutually coupled circuit - Example 4.42.  

~ 



e1 
0.8 H 

i1 i2 

0.3 H 

- 

+ 

Mutual inductance M = k 21 LL  = 0.7 x 0.8 x 0.3  = 0.3429 H 

 

 

 

Mesh current equations are:   

 0.3 )i(i
dt

d
21  + 0.3429 

dt

di2  = e1 

 0.8 
dt

di2  - 0.3429 )i(i
dt

d
12  + 0.3 )i(i

dt

d
12   - 0.3429 

dt

di2  = 0 

 Let 
dt

di1 = a   and   
dt

di2  = b.     Then 

                   0.3 (a - b) + 0.3429 b = e1              

                   0.8 b - 0.3429 (b - a) + 0.3 (b - a) - 0.3429 b = 0 

~ 



                   0.3 (a - b) + 0.3429 b = e1              

                   0.8 b - 0.3429 (b - a) + 0.3 (b - a) - 0.3429 b = 0 

Arranging in matrix form, we get   








0.41420.0429

0.04290.3
 









b

a
 = 









0

e1
 

On solving for ‘a’    a = 
0.1224

0.41420

0.0429e1

 = 
0.1224

0.4142
 e1   = 3.384 e1   

Thus e1 =
a

3.384
= 0.2955 

dt

di1  

For the equivalent circuit    e1 = Leq 
dt

di1       Therefore Leq = 0.2955 H 

 

When two inductances L1 and L2 having mutual inductance of M are connected in parallel, 

it can be shown that the equivalent inductance is .
M2LL

MLL

21

2

21




 depending on the sign 

for mutual inductance. 
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j 2 Ω 

Example 4.43     Determine the voltage across the capacitor in the circuit shown. 

 

 

 

 

  

 

Solution:     Mesh currents are assumed as shown in Fig. below. 

 

 

 

 

  

- j 10 Ω 

I2 I1 

~ ~ 

+ 

V010 09
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        Mesh current equations are: 

        5 (I1 + I2) + j 5 (I1 + I2) - j 2 I2 - j 10I1 = 10 

        5 (I1 + I2) + j 5 (I1 + I2) - j 2 I2 + j 5 I2 - j 2 (I1 + I2) + 5 I2 = 10 - j 10 

        Writing the above in matrix form, we get    












6 j  103 j  5

3 j  55 j - 5
 









2

1

I

I
 = 









10 j - 10

10
 

        On solving I1 = 
50j64

80j20




 = 1.0153 A113.960   

        Voltage across the capacitor = - j 10 I1 = 10.153 V23.960  

- j 10 Ω 

I2 I1 

+ 

V010 09

  - 

+ 

j 2 Ω 

~ 

- 

~ 

j 5 Ω j 5 Ω 5 Ω 5 Ω 

V010 0

  



Example 4.72 

Two coils of self inductances L1 = 8 H and L2 = 2 H have a coefficient of coupling 

0.5.Find all possible values of equivalent inductances that may be obtained by 

connecting the coils in series or in parallel. 

 

Solution: 

 

M = 0.5 2x8 = 2 H 

Leq (series) = L1 + L2 ± 2 M = 14 H or 6 H 

Leq (parallel) = 
M2LL

MLL

21

2

21




 = 

14

12
or 

6

12
= 0.8571 H or 2 H 



Example 4.73 

In the coupled circuit shown, find the voltage across the 5 Ω resistor. 

 

 

 

 

 

 
 

M = k 21 LL ; Multiplying by ω,  Xm = k L2L1 XX = j 0.8 10x5  = j 5.65685 Ω 

  
Taking clockwise mesh currents 
 
j 5 I1 - j 5.65685 I2 + (3 - j 4) (I1 - I2) = 50 
 
j 10 I2 - j 5.65685 I1 + 5 I2 + (3 - j 4) (I2 - I1) = 0 
 














6 j81.65685j-3-

1.65685j-31j3
 









2

1

I

I
 = 









0

 50
 

 
Δ = 11.7479 + j 16.054;   Δ2 = 150 + j 82.925 
 
Current I2 = Δ2 / Δ =  8.6157  -24.870 A  Voltage V5Ω = 5 I2 = 43.0785  -24.870 V 
 

- 

+ 

 5 Ω 

 3 Ω 

- j 4 Ω 

50 00 V ~ 

k = 0.8 

 j 5 Ω  j 10 Ω 

 I1 
 I2 



TUNED CIRCUITS 

There are many practical applications of coupled circuits, especially in the 

communication system. Capacitors are associated with the coupling inductors at the 

input terminals and / or output terminals. Such circuits are called tuned circuits. 

Depending on the number of resonance circuits present we have single tuned and 

double tuned circuits. 

4.15.1 SINGLE TUNED CIRCUIT 

Consider the single tuned circuit shown in Fig. 4.91. 
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Fig. 4.91 Single tuned circuit.  



A parallel resonance circuit is also called as tank circuit. The tank circuit in the 

secondary side is inductively coupled to a coil in the primary side. The primary is 

excited by a variable frequency voltage source Vi. Let RS be the source resistance 

and R1 and R2 be the resistances of the coils 1 and 2 respectively. Also let L1 and L2 

be the self-inductances of the coils 1 and 2 respectively. 

Let RS >> R1 and RS >> ω L1. Then, RS + R1 + j ω L1 ≈ RS.  

 

 

 

RS I1 - j ω M I2 = Vi                                                                                             (4.188) 

(R2 + j ω L2 - j 
Cω

1
) I2 - j ω M I1 = 0                                                                  (4.189) 

Matrix form of above two equations is 



















)
Cω

j
Lωj(RMjω

MjωR

22

S










2

1

I

I
= 









0

iV
                                                              (4.190) 

Two mesh current 
equations are C 

L2 L1 

R2 R1 

- 
I2 

I1 

+ 

V0 

M 

Vi 

RS 

+ 

- 

~ 



We like to obtain an expression for the output voltage V0. This voltage depends on 

the current I2. Solving for the current I2 we get 

I2 = 

)
Cω

j
Lωj(RMωj

MωjR

0Mωj

VR

22

S

i2






 = 

22

22S

i

Mω)
Cω

j
Lωj(RR

VMωj



                      (4.191) 

Output voltage V0 = 2)
Cω

j
( I                                                                            (4.192) 

Thus output voltage V0 =  
22

22S

i

Mω)
Cω

j
Lωj(RR

V
C

M



                               (4.193) 

Voltage amplification factor, also called voltage transfer function, A is defined as 

A = 
i

0

V

V
                                                                                                               (4.194) 



Thus output voltage V0 =  
22

22S

i

Mω)
Cω

j
Lωj(RR

V
C

M



                               (4.193) 

Thus A = 
22

22S Mω)
Cω

j
Lωj(RR

C

M



                                                         (4.195) 

When the secondary side is tuned, the value of the angular frequency ω is set to ωr 

such that 

ωr L2 = 
Cω

1

r

                                                                                                      (4.196) 

Then, the output voltage V0 and the amplification factor A are given by 

V0 = 
22

r2S

i

MωRR

V
C

M


                                                                                         (4.197) 

A = 
22

r2S MωRR

C

M


                                                                                          (4.198) 



V0 = 
22

r2S

i

MωRR

V
C

M


                                                                                         (4.197) 

It is to be noted from eq. (4.197), that the output voltage depends on the mutual 

inductance M. The value of M can be adjusted to get maximum output voltage. For 

this purpose, dividing the numerator and denominator by M, the eq. (4.197) is written 

as 

V0 = 

Mω
M

RR
C

V

2

r
2S

i



 = 
Q

P
                                                                                 (4.199) 

For V0 to be maximum, Q must be minimum i.e. 0
dM

dQ
  

i.e. - 0ω
M

RR 2

r2

2S                    i.e.  M2 = S 2

2

r

R R

ω
 

Thus, the optimal value of the mutual inductance Mopt is obtained as 

Mopt = 
r

2S

ω

RR
                                                                                                   (4.200) 



V0 = 
22

r2S

i

MωRR

V
C

M


             (4.197)           Mopt = 

r

2S

ω

RR
         (4.200)                                                 

When the above optimal value is substituted in eq. (4.197), the maximum output 

voltage V0 max is obtained as 

V0 max = 

2

r

2S2

r2S

i

r

2S

ω

RR
ωRR

V
Cω

RR



 = 
2S

i

r

2S

RR2

V
Cω

RR

 = 
2Sr

i

RRCω2

V
                         (4.201) 

Corresponding voltage amplification factor, Amax is given by 

Amax = 
2Sr RRCω2

1
                                                                                       (4.202) 

We know that mutual inductance M = k 21 LL . Once the value of Mopt is known, this 

can be achieved by adjusting the value of the coefficient of coupling k. 



Mopt = 
r

2S

ω

RR
         (4.200)                                                 

The value of the coefficient of coupling of the tuned circuit for getting maximum output 

voltage at the resonance frequency is called as CRITICAL COUPLING. Thus critical 

coupling kcr is given by 

kcr = 
21

opt

LL

M
 = 

21r

2S

LLω

RR
                                                                                  (4.203) 

It is to be noted that sometime the value of M cannot be brought to 
r

2S

ω

RR
, as its 

value cannot exceed 21 LL  taking k = 1. In such case, the value of M shall be 

restricted to 21 LL . 

Whenever M > Mopt or M < Mopt, the output voltage V0 will be less than the maximum 

output voltage V0 max. Similarly, whenever k > kcr or k < kcr the output voltage V0 will be 

less than V0 max. 



Example 4.47 

Consider the single tuned circuit shown in Fig. 4.92. It has L1 = 25 µH, L2 = 100 µH 

and coefficient of coupling as 0.4. Assume RS >> ωr L1. Determine (i) angular 

resonance frequency (ii) output voltage at resonance (iii) maximum output voltage 

and the corresponding value of M  (iv) critical coupling and (v) output voltage when k 

= 0.8. 
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~ 

Fig. 4.92 Circuit for Example 4.47  



Solution: 

i) At resonance ωr L2 = 
1

rω C
 

   Angular resonance frequency ωr = 
CL

1

2

 = 
0.001x100

106

 = 3.1623 x 106 rad. / sec. 

ii) Mutual inductance M = k 21 LL  = 0.4 100x25  µH = 20 µH 

Output voltage V0 = 
22

r2S

i

MωRR

V
C

M


 =  

400010x10

25x20000
3 

 =35.7143 V 

iii) Mopt = 
r

2S

ω

RR
 =  

6

4

10x3.1623

10
H =  31.6226 µH 

Value of M with k = 1, is  100x25
 
µH =  50 µH 

Therefore, Mopt = 31.6226 µH is feasible. 



Maximum output voltage V0 max =  

2Sr

i

RRCω2

V
   

                                                  = 
100x10x0.001x10x3.1623x2

25
66 

 = 39.5282 V 

iv) Critical coupling kcr = 
21

opt

LL

M
 = 

6-

-6

10x50

10x31.6226
 = 0.63245 

v) When the coefficient of coupling is 0.8 

Mutual coupling M = 0.8 100x25 µH = 40 µH 

Output voltage V0 = 
22

r2S

i

MωRR

V
C

M


 =  

1600010x10

25x40000
3 

 =23.0769 V 

Note: In this case RS = 1000 Ω and ωr L1 = 3.1623 x 106 x 25 x 10-6 = 79.0575 Ω and 

hence the assumption of  RS>> ω L1 is justified. 



Example 4.48 

Consider the single tuned circuit shown in Fig. 4.93. It has L1 = 12.5 µH, L2 = 50 µH 

and coefficient of coupling as 0.6. Assume RS >> ωr L1. Determine (i) angular 

resonance frequency (ii) output voltage at resonance (iii) maximum output voltage 

and the corresponding value of M. 

 

 

 

 

Solution: 

i) Angular resonance frequency ωr = 
CL

1

2

 = 
0.001x50

106

 = 4.4721 x 106 rad. / sec. 

ii) Mutual inductance M = k 21 LL  = 0.6 50x12.5  µH = 15 µH 

Output voltage V0 = 
22

r2S

i

MωRR

V
C

M


 =  

450010x10

25x15000
4 

 =3.5885 V 

Fig. 4.93 Circuit for Example 4.48.  
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iii)  Mopt = 
r

2S

ω

RR
 = 

6

5

10x4.4721

10
H = 70.7112 µH 

Value of M with k = 1, is  50x12.5
 
µH = 25 µH 

Value of M is limited to 25 µH 

Output voltage V0 = 
22

r2S

i

MωRR

V
C

M


 =  

1250010x10

25x25000
4 

 = 5.5555 V 

Corresponding value of M = 25 µH 


