Understanding Drainage Systems and Soil Water Flow: A Design Thinking Approach

1. Introduction (Empathize Stage)

- **Objective**: Understand how **water moves through soil** and how we can **manage drainage** effectively.
- Why it matters:
 - Prevent **crop waterlogging** and **root damage**.
 - Improve soil aeration, crop yield, and machinery access.
 - Design efficient **surface** and **subsurface** drainage systems for sustainable agriculture.
- Empathize with Stakeholders:
 - Farmers need timely water removal.
 - Engineers need to design cost-effective systems.
 - Environmentalists need to protect groundwater quality.

2. Key Concepts (Define Stage)

A. Drainage Coefficient

• Definition:

The **Drainage Coefficient** is the **depth of water (in mm)** that must be removed from soil **within 24 hours** to prevent waterlogging.

- Purpose:
 - Guides the **design of drainage systems** (surface/subsurface).
 - Ensures that crops have **optimal soil moisture** without excess water.
- Typical Values:
 - \circ 2 to 5 mm/day for field crops.
 - 5 to 10 mm/day for high-value crops (vegetables, orchards).

B. Principles of Flow Through Soils

- Water moves through soil pores under the action of:
 - **Gravity** (vertical movement downward)
 - **Capillary forces** (lateral and upward movement)
- Flow depends on:
 - Soil type (sand = fast; clay = slow)

- Pore size and continuity
- Water content (saturated vs unsaturated flow)

C. Darcy's Law

- Fundamental law describing the flow of water through porous media (soils).
- Mathematical Expression:

C. Darcy's Law

- Fundamental law describing the flow of water through porous media (soils).
- Mathematical Expression:

$$Q = kArac{dh}{dl}$$

Where:

- Q = Discharge (volume/time, e.g., m³/s)
- *k* = Hydraulic conductivity (m/s) *soil permeability*
- A = Cross-sectional area perpendicular to flow (m²)
- dh/dl = Hydraulic gradient (head loss per unit distance)
- Interpretation:
 - Flow rate is directly proportional to **hydraulic conductivity** and **hydraulic gradient**.
 - Sandy soils (high k) drain faster; clay soils (low k) drain slowly.

D. Infiltration Theory

- Infiltration: Process of water entering the soil from the surface.
- Governing Factors:
 - Soil texture (sand > silt > clay)
 - Initial moisture content
 - Surface conditions (crusting, compaction)
 - Vegetative cover
 - Infiltration Rate:

- Initially high when soil is dry.
- Decreases and stabilizes at a constant rate over time.
- Important for:
 - \circ Irrigation design
 - Flood management
 - Estimating runoff and drainage needs

3. Surface and Subsurface Drainage Systems (Ideate Stage)

Surface Drainage Systems

- **Purpose**: Quickly remove **excess water** from the surface to prevent waterlogging.
- Types:
 - Field drains (shallow ditches)
 - Bedding systems (raised beds)
 - Land grading (sloping fields)
- Design Principles:
 - Adequate slope ($\sim 0.05\%$ to 0.5%) to facilitate gravity flow.
 - Capacity based on drainage coefficient and rainfall data.

Subsurface Drainage Systems

- **Purpose**: Remove **excess water from root zone** below the surface.
- Types:
 - **Tile drains** (perforated pipes buried in soil)
 - Mole drains (channels formed without pipes)
- Design Principles:
 - Spacing and depth determined by soil permeability and drainage coefficient.
 - Material selection (PVC, clay pipes) must ensure durability.
 - **Outflow management** to prevent environmental contamination.

4. Real-World Application (Prototype and Test Stage)

Crop/Region	Problem	Rheological/Drainage Solution
Rice fields	Water stagnation	Controlled surface drainage
Sugarcane on clay	Waterlogging, poor rooting	Subsurface tile drainage

Crop/Region	Problem	Rheological/Drainage Solution
Vegetable farms	High infiltration variability	Land grading and surface drains

5. Quick Class Activity (Prototype Your Design)

Task:

- Design a **surface** or **subsurface** drainage plan for a farm given:
 - Soil type (clay or sandy)
 - Crop (rice, maize, vegetables)
 - Drainage coefficient (5 mm/day)
- Sketch layout, main drains, lateral drains, and outlets.

Discussion:

- What challenges do you anticipate?
- How would infiltration rate affect your design?

6. Summary

- The **drainage coefficient** determines how much water needs to be removed daily.
- Darcy's law describes water movement through soil.
- Infiltration theory explains how water enters and moves in soil.
- Surface drainage removes water quickly from the field surface.
- Subsurface drainage controls water below the surface, improving crop root health.
- **Design Thinking** helps create practical, user-centered drainage solutions.

Simple diagrams to illustrate:

- Water flow through soil (arrows through pores)
- Surface drainage cross-section
- Subsurface drainage layout with tile pipes
- Infiltration curve (rate vs time)

Task: Design a surface or subsurface drainage plan for a farm given: Soil type (clay or sandy) Crop (rice, maize, vegetables) Drainage coefficient (5 mm/day) Sketch layout, main drains, lateral drains, and outlets

Task:

Design a Drainage System for a farm based on:

ParameterGiven ValueSoil TypeClay or SandyCropRice, Maize, VegetablesDrainage Coefficient 5 mm/day

Solution Plan

1. Analyze Soil Type and Crop Needs

Soil TypeCharacteristicsDrainage NeedClay SoilPoor infiltration, slow drainage NeedsSubsurface drainageSandy SoilHigh infiltration, fast drainageNeedsSurface drainage mainly

2. Decide Drainage System Based on Soil and Crop

Soil-Crop Combination	Recommended System
Clay soil + Rice	Controlled Subsurface Drainage (water table management)
Clay soil + Maize/Vegetables	Aggressive Subsurface Drainage (deep root zones need dry soil)
Sandy soil + Rice/Maize/Vegetables	Surface Drainage (remove occasional ponding quickly)

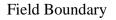
3. Drainage Layout Design Components

- Main Drains: Collect water from entire field and discharge to outlet.
- Lateral Drains: Collect water from smaller field sections and lead to main drain.
- **Outlet**: Point of safe discharge (river, ditch, pond).

4. Basic Drainage Design Assumptions

- **Drainage Coefficient**: 5 mm/day \rightarrow about 5 liters/m²/day needs to be removed.
- Drain Depth (for subsurface):
 - \circ 1.2 to 1.5 m deep for clay soils.
- Drain Spacing:
 - Clay soil (subsurface): 15–30 meters apart.
 - Sandy soil (surface drains): 40–60 meters apart.
- Drain Slope:
 - \circ 0.05% to 0.1% minimum slope for effective gravity flow.

5. Sketch Description


Here's how the **layout** would look:

(For Clay Soil with Subsurface Drainage for Vegetables or Maize)

Field Boundary

```
Г
Lateral Drain Lateral Drain Lateral Drain
                 (15–20m apart)
                                  (15–20m apart)
 (15–20m apart)
 ↓
              ↓
                         ↓
      Main Collector Drain (running across field)
            ↓
         Outlet to water channel
```

(For Sandy Soil with Surface Drainage for Rice/Vegetables)

Raised Bed Shallow Surface Drain Raised Bed | (2–3m wide) (shallow furrow) (2–3m wide) | /\\ /\\ /\\ /\\ Water flows along shallow furrows toward main drain ↓ Main Surface Drain to Outlet

Summary for Field Implementation:

Item	Clay Soil (Subsurface)	Sandy Soil (Surface)
Lateral Drain Spacing	15–20 m	40–60 m (shallow furrows)
Main Drain Depth	1.2–1.5 m below ground	Shallow depression
Drainage Flow Slope	0.05% to 0.1%	0.1%–0.3% for surface
Outlet	Controlled outlet (e.g., check structures for rice)	Simple open discharge

Design Thinking Reflection:

- Empathize: Farmer needs easy operation and minimum waterlogging.
- **Define**: Need to remove 5 mm/day of excess water efficiently.
- Ideate: Chose appropriate surface/subsurface system.
- **Prototype**: Sketch the plan.
- Test: Adjust spacing and depth in real field based on soil tests and field slopes.

How to Calculate Drainage Coefficient

1. Understand what "5 mm/day" means:

- **Drainage Coefficient (Dc) = depth of water** to be removed from the field **per day**.
- 5 mm/day means:
 → We need to remove 5 millimeters thickness of water from every square meter of land surface per day.

2. Convert Millimeters to Liters

• 1 mm of water over 1 $m^2 = 1$ liter of water.

Because:

Volume=Area×Depth

Area = 1 m^2 Depth = 1 mm = 0.001 mThus,

Volume=1 $m^2 \times 0.001 m = 0.001 m^3$

 \Box Therefore:

1 m³=1000 liters

 $0.001~m^3$ = 1 L

1 mm/day = 1 liter/m²/day

3. Apply for 5 mm/day

- **5 mm/day** = 5×1 liter/m²/day
- Thus:

5 liters per square meter per day\

 \Box Every 1 m² of land needs to drain 5 liters of water each day.

Summary

Given Drainage Coefficient	Water to be Removed
1 mm/day	1 liter/m²/day
5 mm/day	5 liters/m²/day
10 mm/day	10 liters/m ² /day

Quick Formula:

Water to Remove (liters/m²/day)=Drainage Coefficient (mm/day)

Real-Life Meaning:

If a farmer has **1 hectare** (10,000 m²) of clay field, and drainage coefficient is **5 mm/day**, then:

5 liters/m2/day×10,000 m2=50,000 liters/day

Thus, **50,000 liters/day** of excess water must be removed from that hectare every day!