☐ Centrifugal Pump Performance Test –Worksheet

☑ Context (Empathize & Define):

A rural village with 200 households and 5 hectares of farmland relies on a centrifugal pump for water. Water delivery is inconsistent during peak hours. Your task is to test if the current pump setup is sufficient, and suggest improvements using design thinking principles.

Problem Data (Given):

• Daily water demand: 150,000 liters

• Pump operating time: 8 hours/day

• Static head: 15 meters

• Frictional loss: 5 meters

• Pump efficiency: 65%

• Motor power: 5 HP

• Water density (ρ): 1000 kg/m³

• Gravitational acceleration (g): 9.81 m/s²

• Power conversion: 1 HP = 746 Watts

Part A: Numerical Analysis

1. Calculate the required flow rate (Q) in L/s:

Q = Daily demand / Total operating time in seconds

 $Q = \underline{\hspace{1cm}} L/s$

2. Calculate the Total Dynamic Head (TDH):

TDH = Static head + Friction loss

 $TDH = \underline{\hspace{1cm}} m$

3. Convert Q to m³/s and calculate Hydraulic Power (P_hydraulic):

P_hydraulic = $\rho \times g \times Q \times H$

P_hydraulic = ____ Watts

4. Calculate Actual Power required considering efficiency:

 $P_{actual} = P_{hydraulic} / \eta = ____ Watts$

5. Compare with Motor Power (in Watts):

Motor Power = $5 \times 746 =$ ____ Watts

Is the motor sufficient? Circle one: YES / NO

Part B: Ideate Solutions (Creative Thinking)

Based on your analysis, suggest 2–3 design improvements to make the water system more efficient, reliable, or sustainable.

1	 	 	
2			
3.			

Part C: Prototype Ideas (Optional Extension)

Sketch or describe a new system setup including components like:

- Solar panels
- Smart controllers
- Parallel pumps
- Local maintenance plans

Use the space below or attach an additional sheet.