

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

Unit V

- 1. Prove that, if the input to a time invariant, stable linear system is a WSS process, then the output will also be a WSS process.
- 2. Prove that (i) $R_{XY}(\tau) = R_{XX}(\tau) * h(\tau)$ (ii) $R_{YY}(\tau) = R_{XY}(\tau) * h(-\tau)$ (iii) $S_{XY}(\omega) = S_{XX}(\omega)H(\omega)$ (iv) $S_{YY}(\omega) = S_{XY}(\omega)H^*(\omega)$ (v) $S_{YY}(\omega) = S_{XX}(\omega)|H(\omega)|^2$
- 3. X(t) is the input voltage to a circuit and Y(t) is the output voltage. {X(t)} is a stationary Random process with $\mu_X = 0$ and $R_{XX}(\tau) = e^{-\alpha |\tau|}$. Find μ_Y , $S_{YY}(\omega)$ and $R_{YY}(\tau)$, if the power transfer function is $H(\omega) = \frac{R}{R+iL\omega}$.
- 4. An LTI system has an impulse response $h(t) = e^{-\beta t}u(t)$. Find the output autocorrelation function $R_{YY}(\tau)$ corresponding to an input X(t).
- 5. Assume a random process X(t) is given as input to a system with transfer function $H(\omega) = 1$ for $-\omega_0 < \omega < \omega_0$. If the autocorrelation function of the input process $\frac{N_0}{2} \delta(r)$. Point out the autocorrelation function of the output process.
- 6. Let X(t) be a stationary process with mean 0 and autocorrelation function $e^{-2|c|}$. If X(t) is the input to a linear system and Y(t) is the output process ,Calculate (i) E[Y(t)] (ii) S_{YY}(\Box) and (iii) R_{YY}(|r|), if the system function $H(\omega) = \frac{1}{\omega+2i}$.
- 7. Let X(t) be the input voltage to a circuit system and Y(t) be the output voltage. If X(t) is a stationary random process with mean 0 and autocorrelation function R_{XX}(τ) = e^{-α|τ|}.
 i) E[Y(t)]
 ii) S_{XX}(□) and The spectral density of Y(t) if the power transfer function H(ω) =

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

R R+iLω

- 8. A random process X(t) is the input to a linear system whose impulse function is $h(t) = 2e^{-t}$, $t \ge 0$. The auto correlation function of the process is $R_{XX}(\tau) = e^{-2|\tau|}$. Find the power spectral density of the output process Y(t).
- 9. Find the power spectral density of a random telegraph signal.
- 10.If X(t) is the input voltage to a circuit and Y(t) is the output voltage. {X(t)} is a stationary random process with $\mu_x = 0$ and $R_{XX}(\tau) = e^{-2|\tau|}$. Find the mean μ_y and power spectrum $S_{yy}(\omega)$ of the output if the system transfer function is given by $H(\omega) = \frac{1}{\omega+2i}$.
- 11. Two random processes X(t) and Y(t) are jointly wide-sense stationary. Prove that the cross-spectral density $S_{XY}(f)$ is the Fourier transform of the cross-correlation function $R_{XY}(\tau)$. (Gate ECE 2024)
- 12.Compute the auto-correlation function of a random process for an LTI system with $H(\omega) = \frac{1}{1+j\omega}$, find output PSD if input X(t) has $R_{XX}(\tau) = e^{-|\tau|}$.(Gate ECE 2025)
- 13.Design a problem where you determine the output auto correlation of an LTI system given its impulse response $h(t) = e^{-t}u(t)$ and input auto correlation $R_{XX}(\tau) = \delta(\tau)$. (Leetcode Hard)
- 14.Show that if the input $\{X(t)\}$ is a WSS process then the output $\{Y(t)\}$ is also a WSS process.

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

- 15.Two jointly WSS processes X(t) and Y(t) have cross-correlation $R_{XY}(\tau) = 5e^{-2|\tau|} \sin(3\tau)$. Compute the cross spectral density. (GATE ECE 2025)
- 16.Sensor network captures X(t) with $R_{XX}(\tau) = 2e^{-3|\tau|}$. Find $S_{XX}(\omega)$. (Leetcode /GATE ECE 2024)