
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION
ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

UNIT 4 :Embedded Operating System and Modelling

TOPIC 4.8 : POSIX Semaphores

1

19ECT312/Embedded System Design / Dr.B.Sivasankari/Professor/ ECE/SNSCT

 POSIX semaphores are synchronization primitives used in multi-threaded

programming to control access to shared resources among concurrent threads

 Unlike mutexes, which allow only one thread to access a resource at a time,

semaphores can permit multiple threads to access a resource simultaneously, up to

a specified limit

 Semaphores maintain an internal counter that represents the number of available

resources or permits, which threads acquire or release using the sem_wait() and

sem_post() functions, respectively

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

2/11

POSIX Semaphores

 This flexibility makes semaphores suitable for scenarios where multiple threads

need controlled access to shared resources or where synchronization needs to be

more granular than what mutexes offer

 However, improper usage of semaphores can lead to deadlocks or race

conditions, so careful programming and understanding of concurrency principles

are essential when working with POSIX semaphores.

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

3/11

POSIX Semaphores

POSIX Semaphors API

 POSIX (Portable Operating System Interface) semaphores API provides a

standardized interface for controlling semaphores in Unix-like operating systems

 Semaphores are synchronization primitives used for inter-process communication

and coordination

 In POSIX, semaphores are typically used to coordinate access to shared resources

among multiple processes or threads

 They can be thought of as counters with associated atomic operations for

incrementing, decrementing, and testing their values

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

4/11

POSIX Semaphores

1. sem_init: Initializes a semaphore with a specified initial value.

2. sem_destroy: Destroys a semaphore, releasing any associated

resources.

3. sem_wait: Decrements the value of a semaphore. If the value is

zero, the function blocks until the semaphore becomes non-

zero.

4. sem_post: Increments the value of a semaphore.

5. sem_getvalue: Retrieves the current value of a semaphore without

modifying

it.

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

5/11

POSIX Semaphores

POSIX Semaphores

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

6/11

Advanced Semaphore Techniques

 Advanced semaphore techniques involve more sophisticated usage patterns

and scenarios beyond basic synchronization

Advanced techniques

1. Multiple Semaphores for Resource Allocation

 Instead of using a single semaphore to control access to a shared resource,

you can use multiple semaphores to manage different aspects of resource

allocation

 For example, one semaphore can control read access, another semaphore can

control write access, and additional semaphores can manage other types of

access or resource states.

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

7/11

POSIX Semaphores

2. Counting Semaphores

 While binary semaphores have only two states (0 and 1), counting

semaphores can have an initial count greater than 1

 They are useful for scenarios where multiple instances of a resource can be

allocated simultaneously

 Threads or processes decrement the semaphore count when they acquire the

resource and increment it when they release it.

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

8/11

POSIX Semaphores

Advantage:

Portability: Standardized interface

compatibility and easy migration of code.

Inter-Process Communication (IPC):

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

9/11

across Unix-like operating systems ensures

Facilitates synchronization and communication

between multiple processes.

Scalability: Adaptable for simple to complex synchronization needs in applications with

multiple processes or threads.

Flexibility: Offers binary and counting semaphore types for diverse synchronization

requirements.

Efficiency: Implemented with efficient algorithms and system calls, minimizing overhead in

memory and processing time.

Ease of Use: Simple API with intuitive functions for semaphore management simplifies

development and maintenance.

POSIX Semaphores

Limitations:

Limited Functionality: Lack advanced features like deadlock detection and priority

inheritance found in other synchronization primitives.

Complex Error Handling: Error handling can be intricate, requiring careful attention to

return values and error codes.

Kernel Dependency: Performance and behavior may vary based on the underlying

operating system and kernel version.

Resource Overhead: Each semaphore consumes system resources, potentially becoming

problematic in applications requiring many semaphores.

Portability Challenges: While aiming for portability, differences in behavior and

implementation across platforms may arise.

Risk of Deadlocks and Races: Improper use can lead to deadlocks or race conditions,

demanding careful programming to avoid.

5/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

10/11

POSIX Semaphores

Thank you

26/03/20245/6/2025 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

