



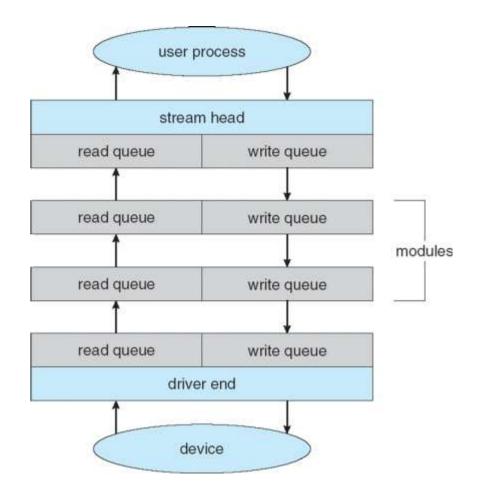


(Autonomous ) COIMBATORE-35

### STREAMS AND PERFORMANCE

23CST202-OS-Unit 5/Streams and Performance /Dr.B.Vinodhini/ASP/CSE






- **STREAM** a full-duplex communication channel between a user-level process and a device in Unix System V and beyond
- A STREAM consists of:
  - STREAM head interfaces with the user process
  - driver end interfaces with the device
  - zero or more STREAM modules between them
- Each module contains a **read queue** and a **write queue**
- Message passing is used to communicate between queues
  Flow control option to indicate available or busy
- Asynchronous internally, synchronous where user process communicates with stream head





### **The STREAMS Structure**







Performance

- I/O a major factor in system performance:
  - Demands CPU to execute device driver, kernel I/O code
  - Context switches due to interrupts
  - Data copying
  - Network traffic especially stressful





#### **STREAMS AND PERFORMANCE**

#### Intercomputer CommunicationsI/O







## **Improving Performance**

- Reduce number of context switches
- Reduce data copying
- Reduce interrupts by using large transfers, smart controllers, polling
- Use DMA
- Use smarter hardware devices
- Balance CPU, memory, bus, and I/O performance for highest throughput
- Move user-mode processes / daemons to kernel threads

# **References**

1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", Ninth Edition, Wiley India Pvt Ltd, 2009.

2. Andrew S. Tanenbaum, "Modern Operating Systems", FourthEdition, Pearson Education, 2010.





# **Summarization**

23CST202-OS-Unit 5/Streams and Performance /Dr.B.Vinodhini/ASP/CSE