

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

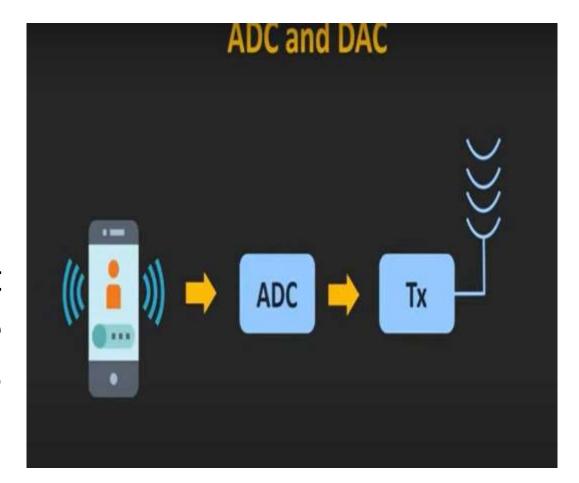
23ECB202 – LINEAR INTEGERATED CIRCUITS

II YEAR/ III SEMESTER

Analog and Digital Data Conversions

- ➤ Analog-to-digital conversion (ADC) transforms continuously varying analog signals into discrete digital representations
- > while digital-to-analog conversion (DAC) does the opposite, converting digital signals back into analog form.

Analog-to-Digital Conversion (ADC)



Definition

ADC is the process of converting a continuous analog signal (like voltage, sound, or light) into a digital signal

Process

➤ ADCs sample the analog signal at regular intervals, quantize the sampled values, and then encode them into a digital format, typically a binary number

Types

- > successive approximation
- dual slope and
- delta-sigma converters.

Analog-to-Digital Conversion (ADC)

Key Concepts

- > Sampling: Taking periodic snapshots of the analog signal at specific time intervals
- ➤ Quantization: Assigning a discrete digital value to each sample based on its amplitude
- > Coding: Representing the quantized values as a binary number

Applications

- audio recording
- > image processing
- > and data acquisition

Digital-to-Analog Conversion (DAC)

Definition

➤ DAC converts digital signals (represented as binary numbers) into a continuous analog signal

Process

➤ DACs take a digital input and produce an output voltage or current that corresponds to the digital value

Types

- weighted resistor DACs
- ➤ R-2R ladder DACs

Digital-to-Analog Conversion (DAC)

Key Concepts

- ➤ **Decoding:** Interpreting the digital input and determining the corresponding analog value
- ➤ Output: Producing a continuous analog signal based on the decoded digital input

Applications

- audio playback
- display systems, and
- control systems

THANK YOU