

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB202 – LINEAR INTEGERATED CIRCUITS

II YEAR/ III SEMESTER

UNIT 4 – ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER

TOPIC 4.3 – Flash Type & Successive Approximation Type ADC

Flash Type - ADC

 \succ Flash ADCs are frequently used when speed is critical and latency must be kept to a minimum

> The basic idea behind a Flash ADC is simple: it compares the input analog value to numerous reference voltages and provides a digital output in a single step

 \blacktriangleright Va > Vd - Output is "1" \blacktriangleright Va < Vd - Output is "0"

Flash Type - ADC

Flash Tpe & Successive Approximation Type/23ECB202-LIC/Dr.B.Sivasankari/Professor/ECE/SNSCT

0.00

Flash Type - ADC

- \geq Also called the *parallel* A/D converter, this circuit is the simplest to understand
- \succ It is formed of a series of comparators, each one comparing the input signal to a unique reference voltage.
- \succ The comparator outputs connect to the inputs priority encoder circuit, which then produces a binary output.
- $\geq V_{ref}$ is a stable reference voltage provided by a precision voltage regulator as part of the converter circuit, not shown in the schematic
- \succ As the analog input voltage exceeds the reference voltage at each comparator the comparator outputs will sequentially saturate to a high state
- > The priority encoder generates a binary number based on the highestorder active input, ignoring all other active inputs

of а

Successive Approximation Type ADC

- > This ADC technique most frequently includes general applications
- > The ADC comprises a comparator, a digital-to-analog converter, a register, and a control circuit
- \succ To grasp the concept, consider a 4-bit ADC with a sampling rate of 11.2 volts. \blacktriangleright We take the comparator reference voltage as 16 volts
- \triangleright Whenever the new transformation begins, the successive approximation register sets the most significant bit to 1 and all others to zero
- \triangleright As the register is followed by the DAC, the input to the DAC is 1000

Successive Approximation Type ADC

> Successive Approximation is one of the most widely used methods of digitizing an analog signal

Successive Approximation Type ADC

Correct Digital Representation (Va)	SAR o/p Vd at different stages in correction	Comparator o/j
	1000000	1
	11000000	1
	11010000	0
	11011000	1
	11010100	0
	11010110	1
	11010101	0
	11010100	0

THANK YOU

Flash Tpe & Successive Approximation Type/23ECB202-LIC/Dr.B.Sivasankari/Professor/ECE/SNSCT

