2. Newtonian and Non-Newtonian liquid

Newtonian fluids have a constant viscosity, meaning their resistance to flow remains the same regardless of the applied force or shear rate. Non-Newtonian fluids, on the other hand, exhibit a viscosity that changes depending on the applied force or shear rate, such as ketchup thinning when shaken.

Newtonian Fluids:

• Constant Viscosity: Their resistance to flow remains the same regardless of the applied force or shear rate.

Examples: Water, air, motor oil.

• Follow Newton's Law of Viscosity: This law states that the shear stress is directly proportional to the rate of shear strain, which is the fluid's resistance to flow.

Non-Newtonian Fluids:

• Variable Viscosity: Their resistance to flow changes depending on the applied force or shear rate.

Examples: Ketchup, yogurt, mayonnaise.

• Do not follow Newton's Law of Viscosity: Their viscosity changes with applied stress.

Types:

- o **Shear-thinning:** Viscosity decreases with increasing shear rate (e.g., ketchup thinning when shaken).
- o **Shear-thickening:** Viscosity increases with increasing shear rate (e.g., quicksand).
- o **Thixotropic:** Viscosity decreases over time under constant shear stress (e.g., paint thinning when stirred).
- Rheopectic: Viscosity increases over time under constant shear stress (e.g., some gels).
 Key Differences:

Feature	Newtonian Fluids	Non-Newtonian Fluids
Viscosity	Constant	Variable
Shear Stress	Directly proportional to shear strain rate	Not necessarily proportional to shear strain rate
Examples	Water, air, motor oil	Ketchup, yogurt, mayonnaise