

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ301– ROBOTICS & AUTOMATION IN SPACE

III YEAR VI SEM

UNIT 5 – ROBOTIC APPLICATIONS IN SPACE

TOPIC - MICRO AND NANOROBOTS

INTRODUCTION TO MICRO AND NANOROBOTS

Micro/Nanorobots:

• Tiny robots ranging from micrometers to nanometers in size, designed to perform specific tasks at cellular or molecular levels.

Definitions:

- Microrobots: $\sim 1 \text{ mm to } 1 \mu \text{m size range}$
- Nanorobots: $<1 \mu m$ (nano-scale, $10^{-9} m$)

Key Characteristics:

- Operate in microenvironments (e.g., bloodstream, tissue, microfluidics)
- Controlled using magnetic fields, light, or chemical gradients

APPLICATIONS OF MICRO AND NANOROBOTS

Domain	Application
Medical	Targeted drug delivery
Diagnostics	In-body sensors
Environmental	Pollutant detection
Manufacturing	Nanoassembly

ROBOTIC APPLICATIONS IN SPACE/19ASZ301 ROBOTICS AND AUTOMATION IN SPACE/RAMESH M/AERO/SNSCT

Function
Directly attack tumors or infected cells
Monitor biological signals at the cellular level
Collect and detect toxins at molecular scale
Build tiny structures for electronics or optics

CHALLENGES AND FUTURE PROSPECTS IN SPACE

Challenges:

- Powering micro/nanorobots in vacuum
- Navigation in zero-gravity or radiationrich environments
- Biocompatibility and toxicity for humanrelated applications

Future Directions:

- Swarms of nanorobots for material selfrepair in satellites
- Embedded nanobots in spacesuits for physiological monitoring
- Autonomous microsensors on spacecraft for predictive maintenance

Aspect
Structural Health
Medical Monitorir
Environmental Se

	Micro/Nanorobot Potential in Space
	Internal inspection of spacecraft materials
ng	Real-time astronaut diagnostics
ensing	Detection of contaminants, radiation exposure

Thank You

ROBOTIC APPLICATIONS IN SPACE/19ASZ301 ROBOTICS AND AUTOMATION IN SPACE/RAMESH M/AERO/SNSCT

