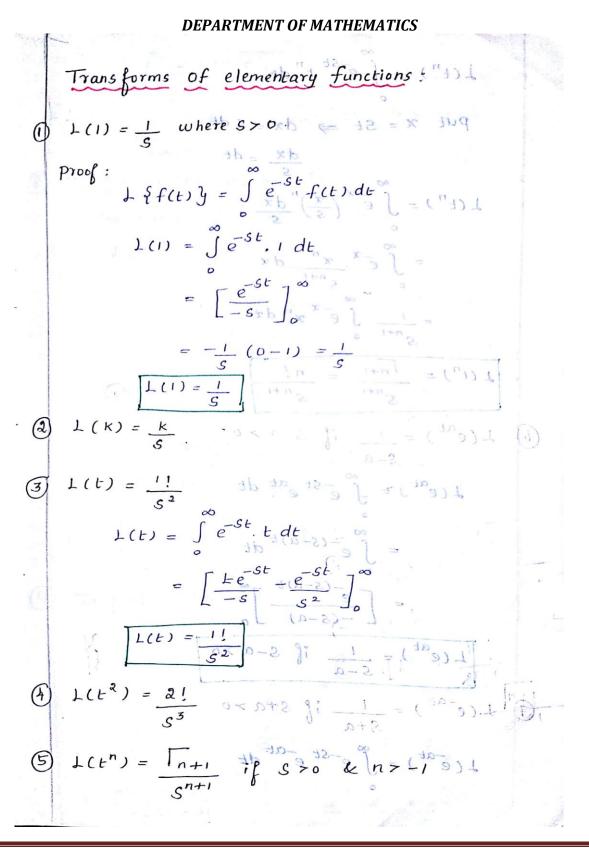


(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

UNIT-I APLACE TRANSFORMS Londibions TNTRODUCTION: (1) f(t) should be continuous or à statu Laplace Transformation , amamed after a great French Mathematician Pierre Sinton De Laplace (1749-1827) Who used such transformations in the " Theory of probability" function feed is Said to be Uses of Laplace Transformation: order il 1. It is used to find the solution of linear differential equations - ordinary as well as partial. a. It helps in solving the differential equation with boundary values without finding the general solution and then finding the values of the arbitrary constants Transformation ; A transformation is an operation which converts to a different but 5172 equivalent form. infrai Laplace Transformation : Definition : Stu s Let f(t) be a function of t defined for t>0 Then the Laplace transform of f(t), denoted by 1 & f(t) ; or F(s) is defined by, $L [f(t)] \xrightarrow{d_2} \int e^{-st} f(t) dt \xrightarrow{d_1} F(s) \xrightarrow{d_1}$ Provided the integral exists. - 00 - -is not of exponential order

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU


DEPATMENT OF MATHEMATICS

Conditions for existence of Laplace transform: (i) f(t) should be continuous or piecewise continuous in the given closed interval [a,b] where a>0 (ii) f(t) should be of exponential order. Exponential order : (1349-1827) who used asach A function -f(t) is -said to be of exponential order if differential country ordinarge = 1 well as partial differential country ordinarge = 1 well as partial It helps in sating the differential costants 5 $Lt = \int_{0}^{-St} f(t) = Lt = \int_{0}^{St} f(t) = \int_{0}^{2St} e^{-St} = \int_{0}^{2St} e^{-S$ on is an operation which donverb Sides in the set of t form = Lt 2t noting a tom setstant apply L' Hospito los trop benifest d'is not of exponential order. z = 0 $t \to \infty$ $s^2 e^{5t} = \frac{2}{994} = 0$ z = 0 $t \to \infty$ $s^2 e^{5t} = \frac{2}{994} = 0$ $t \to \infty$ $s^2 e^{5t} = \frac{2}{994} = 0$ $t \to \infty$ $s^2 e^{5t} = \frac{2}{994} = 0$ $\begin{array}{ccc} Lt & -st \\ t \rightarrow \infty \end{array} f(t) = 0 \ Lt \quad e^{-st} e^{t^2} \\ t \rightarrow \infty \end{array}$ E-> 0 C = e[∞] = ∞ is not of exponential order.

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS L(tn) = oilsreils tradtanois to emotenant put $x = St \Rightarrow dx = Sdtatus \frac{1}{2} = (1)$ $L(t^{n}) = \int_{e}^{\infty} \frac{dx}{\left(\frac{x}{s}\right)^{n}} \frac{dx}{s} = [(1)]^{2} dx$ $\int_{0}^{\infty} e^{-x} \frac{x^{n}b}{x^{n+1}} dx = \int_{0}^{\infty} e^{-x} \frac{x^{n+1}}{x^{n+1}} dx$ $\frac{1}{S^{n+1}}\int_{0}^{\infty}e^{-\chi}\chi^{n}\,d\chi$ $\mathcal{L}(t^{n}) = \frac{\prod_{n \neq i} 2}{S^{n+i}} = \frac{n!}{S^{n+i}}$ b $L(e^{at}) = \frac{1}{s-a} \quad \text{if } s-a > 0 \quad \text{if } (1)$ $\mathcal{L}(e^{at}) = \int e^{-st} e^{at} dt$ $=\int_{0}^{\infty}e^{-(s-a)t}dt = (1)t$ $= \int \frac{e^{-(s-a)t}}{e^{-(s-a)}} \int \frac{e^{-at}}{e^{-at}}$ $(= -(s-a) \int_{a}^{b} \frac{1}{s-a} \int_{a}^{b} \frac{1}{s-a} \int_{a}^{b} \frac{1}{s-a} \int_{a}^{b} \frac{1}{s-a} \int_{a}^{b} \frac{1}{s-a} \int_{a}^{b} \frac{1}{s+a} \int_{a}^{b} \frac{1}$ $L(e^{-at}) = \int_{0}^{\infty} e^{-st} e^{-at} dt \qquad ("1) dt$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

$$= \int_{a}^{\infty} e^{-(s+a)t} dt : (1a has) L baif of (a)$$

$$= \int_{a}^{\infty} e^{-(s+a)t} dt : (1a has) L baif of (a)$$

$$F(e^{at}) = \frac{1}{s+a} + \frac{1}{s} \int_{a}^{s} \frac{1}{s+a} \int_{a}^{s} \frac{1}$$