

(An Autonomous Institution) E. New Delhi. Affiliated to Anna Univ

DEPARTMENT OF MATHEMATICS

Thitial value theorem:

If the Laplace transform of
$$f(t)$$
 and $f'(t)$ exists and $L[f(t)] = F(s)$ then

Lt $f(t) = Lt$ $SF(s)$

Proof:

We know that

$$L[f'(t)] = SL[f(t)] - f(0)$$

$$SF(s) = L[f'(t)] + f(0)$$

$$SF(s) = \int_{0}^{\infty} e^{-St} f'(t) dt + f(0)$$

Taking limit as $S \to \infty$ on both sides we get,

 $S \to \infty$
 $S \to \infty$

(An Autonomous Institution)

DEPATMENT OF MATHEMATICS

$$= \int_{0}^{\infty} \int_$$

(An Autonomous Institution)
Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & COIMBATORE-641 035. TAMIL NADU

DEPARTMENT OF MATHEMATICS

Verify the initial and final value theorem for
$$f(t) = 1 + e^{t}$$
 (Sint + cost)

Soln:

$$F(S) = L \left[1 + e^{t} \text{ Sint} + e^{t} \text{ cost}\right]$$

$$= L(1) + L(\text{sint})_{S \to S+1} + L(\text{cost})_{S \to S+1}$$

$$= \frac{1}{5} + \left(\frac{1}{5^{2}+1}\right)_{S \to S+1} + \left(\frac{5}{5^{2}+1}\right)_{S \to S+1}$$

$$= \frac{1}{5} + \frac{1}{(5+1)^{2}+1} + \frac{5+1}{(5+1)^{2}+1}$$

$$= \frac{1}{5} + \frac{5+2}{5^{2}+25+2}$$

$$\therefore SF(S) = S \int \frac{1}{5} + \frac{5+2}{5^{2}+25+2}$$
Initial value theorem:

$$\begin{array}{c} Lt \\ S \to \infty \end{array}$$

$$\begin{array}{c} Lt \\ L \to \infty \end{array}$$

(An Autonomous Institution)
Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Lt $SF(S) = 1t$ $S \left[\frac{1}{S} + \frac{S+2}{S^2+2S+2} \right]$	
製造 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$= \frac{1}{S} + \frac{1}{S} + \frac{1}{2} + \frac{1}{2} = 1$	
Hence Lt $f(t) = Lt$ $SF(S) = 1$, FVT is V	erified
Laplace Transform of Some Special function Unit Step function:	
The unit step function also called	
Heavisides unit function is defined as,	
$u(t-a) = \begin{cases} 0, & t < a \\ 1, & t > a \end{cases}$	
This is the unit step functions at	
It can also be denoted by H(t-a) or ual	E).
Laplace Transform of whit step functi	on
is $\frac{e^{as}}{s}$ i.e., $L[uct-a] = \frac{e^{-as}}{s}$	
Proof: 36 450 400	
$L \left[u \left(t - a \right) \right] = \int_{0}^{\infty} e^{-st} u(t-a) dt$	
$= \int_{0}^{a} e^{-st} u(t-a) dt + \int_{0}^{\infty} e^{-st} dt$	1(t-a
5 = (2)73 ° 11 = 00) 13 to 11 a	
$= \int \frac{e^{-st}}{-s} \int_{a}^{\infty} a^{-st} dt$ $= \frac{e^{-st}}{s} \int_{a}^{\infty} a^{-st} dt$ $= \frac{e^{-st}}{s} (s > 0)$	
nal Value theore & - L	Fi
$=\frac{1}{e^{-as}}$ = $\frac{1}{e^{-as}}$ ($\frac{1}{e^{-as}}$)	
	(1)