
SNS COLLEGE OF TECHNOLOGY 
(An Autonomous Institution) 

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai 

Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) & 

Accredited by NBA (B.E - CSE, EEE, ECE, Mech&B.Tech.IT) 

COIMBATORE-641 035, TAMIL NADU 

 

B.E/B.Tech- Internal Assessment – III 

Academic Year 2024-2025 (Even Semester) 

Fourth Semester 

23CST202–Operating Systems 

ANSWER KEY 

1. Illustrate with an example how a linked allocation method works in file storage. 

In the linked allocation method, each file is stored as a linked list of disk blocks located anywhere on the disk. 

Each block contains the actual data and a pointer to the next block in the sequence. For example, a file might be 
stored in blocks 4 → 10 → 22 → 17, with each block pointing to the next. This approach eliminates external 

fragmentation and is efficient for sequential access. However, it is inefficient for random access since blocks must 

be accessed sequentially. 

2. Compare and contrast single-level and hierarchical directory structures. 
A single-level directory structure places all files in one directory, making it simple to implement but problematic 

as file names must be unique. It becomes inefficient as the number of files grows, especially in multi-user systems. 

In contrast, a hierarchical directory uses a tree structure with directories and subdirectories, allowing better file 

organization. Users can group related files and avoid name conflicts. Hierarchical systems scale well and support 

complex pathnames. 

3. Differentiate between RAID Level 0 and RAID Level 1 in terms of data redundancy and performance. 

RAID Level 0 uses data striping, distributing data across multiple disks for increased performance, but it offers 

no data redundancy—if one disk fails, all data is lost. RAID Level 1 mirrors data on two or more disks, ensuring 

data redundancy by keeping exact copies. While RAID 0 provides better speed, RAID 1 provides high fault 

tolerance at the cost of storage efficiency. RAID 1 is preferred for reliability, while RAID 0 suits performance-

focused systems. Storage cost is higher in RAID 1 due to duplication. 

4. A 300 GB disk uses a file descriptor with 8 direct block addresses, 1 indirect, and 1 doubly indirect block 

address. With 128-byte disk blocks and 8-byte addresses, what is the maximum file size? 

Given a 128-byte block size and 8-byte address size, each block can store 16 addresses. The file descriptor has 8 

direct block pointers (8 × 128 = 1024 bytes), one indirect block (16 × 128 = 2048 bytes), and one doubly indirect 

block (16 × 16 × 128 = 32,768 bytes). Adding all together, the maximum file size supported is 1024 + 2048 + 

32,768 = 35,840 bytes. Despite the 300 GB disk, the file size is limited by the descriptor structure. 

5. Describe how the NTFS file system manages disk space and file metadata. 

NTFS uses a Master File Table (MFT) to store metadata and manage disk space efficiently. Each file or directory 

is represented by a record in the MFT, which includes attributes such as file name, size, timestamps, and 

permissions. NTFS uses clusters (groups of sectors) for disk allocation and maintains a bitmap to track free and 

used space. For small files, data can be stored directly within the MFT record, reducing fragmentation. NTFS also 

supports advanced features like journaling, encryption, and compression. 

6 (a)Analyze the different file allocation methods (contiguous, linked, and indexed). Discuss their advantages, 

disadvantages, and the type of applications where each is most suitable  

Efficient file allocation is a fundamental aspect of operating system design, particularly in the management of 

secondary storage such as hard disks and solid-state drives. The goal of file allocation is to ensure that data is 

stored and retrieved efficiently, reliably, and with minimal overhead. The method used to allocate space for files 

directly influences system performance, fragmentation, data integrity, and ease of file management. Three primary 



methods of file allocation are commonly used: Contiguous Allocation, Linked Allocation, and Indexed 

Allocation. Each of these methods has its own strengths and weaknesses and is best suited to specific types of 

applications and usage scenarios. 

1. Contiguous Allocation 

Mechanism 

Contiguous allocation is the simplest file allocation technique. When a file is created, the operating system 

allocates a sequence of consecutive blocks on the disk to store the file. The starting block number and the length 

of the file (in blocks) are stored in the file allocation table (FAT) or the directory structure. For instance, if a file 

needs five blocks and starts at block 10, it will occupy blocks 10 to 14. 

Advantages 

 Fast Access: Since blocks are located next to each other, this method provides excellent performance for 

both sequential and direct access. 

 Simple Implementation: Its straightforward design makes it easy to implement and maintain. 

 Minimal Overhead: Unlike other allocation methods, it doesn't require additional metadata (like 

pointers or index blocks) beyond the base and length. 

Disadvantages 

 External Fragmentation: Over time, as files are created and deleted, free space becomes fragmented. 

Large contiguous blocks may become rare, leading to allocation failures even when enough total space 

exists. 

 Difficult File Growth: If a file needs to grow beyond its initially allocated space and the following 
blocks are occupied, it must be relocated entirely, which is inefficient. 

 Wasted Space: Allocating more space than needed initially to accommodate growth can result in unused 

storage. 

Suitable Applications 

 Multimedia Streaming: Audio and video files benefit from fast sequential access. 

 Read-Only Media: Systems where files are written once and never modified (e.g., CD-ROMs, firmware 

storage). 

 Static File Systems: Embedded or appliance-based OSes where file sizes are predictable and don’t 

change frequently. 

2. Linked Allocation 

Mechanism 

In linked allocation, each file is stored as a linked list of disk blocks. Each block contains data and a pointer to the 

next block. Only the starting block address is stored in the directory entry. Unlike contiguous allocation, blocks 

can be scattered throughout the disk. 

For example, if a file occupies block 9, which points to block 16, which then points to block 25, and so on, the 

file can be read by following the chain of pointers from the starting block. 

Advantages 

 No External Fragmentation: Blocks can be located anywhere on the disk, so there is no need to find a 

large contiguous space. 

 Dynamic File Size Management: Files can grow or shrink as needed without reallocation or movement. 



 Efficient Use of Disk Space: The system can utilize all available disk blocks without worrying about 

block contiguity. 

Disadvantages 

 Poor Random Access: To read the nth block, the system must traverse all n-1 blocks sequentially, 

making random access operations slow. 

 Pointer Overhead: Each block must store a pointer, reducing the usable space for actual data. 

 Reliability Risks: If a pointer is corrupted, the rest of the file may become inaccessible. Additionally, 

recovering a damaged chain is difficult. 

 Increased Disk Seeks: Since blocks are scattered, the read/write head may need to move frequently, 

increasing access time. 

Suitable Applications 

 Log Files and Transaction Histories: Where data is primarily appended and rarely accessed randomly. 

 Archival Systems: Where read/write performance is secondary to efficient storage. 

 File Systems in Simple or Embedded OSes: Where minimal metadata and small file sizes are the norm. 

3. Indexed Allocation 

Mechanism 

Indexed allocation uses a special block, known as an index block, which contains pointers to all the blocks used 

by the file. The directory entry for the file stores the address of this index block. The file blocks themselves can 

be scattered anywhere on the disk, and the index keeps track of their order. 

If a file has blocks at 2, 15, 26, and 33, the index block will contain these addresses. For large files, multi-level 

indexing (e.g., as in UNIX inodes) or indirect blocks may be used. 

Advantages 

 Supports Both Sequential and Random Access: Direct access to any block is possible via the index. 

 No External Fragmentation: Like linked allocation, blocks can be anywhere. 

 Efficient for Small and Large Files: Small files need only one index block, while larger ones can use 

multi-level indexing. 

Disadvantages 

 Metadata Overhead: Extra storage is needed for the index block(s). 

 Complex Implementation: Managing multi-level indexes and dealing with file growth is more 

complicated. 

 Wasted Index Space for Small Files: Small files may use only a few pointers in the index block, wasting 

space. 

Suitable Applications 

 General-Purpose Operating Systems: UNIX, Linux, and Windows use indexed allocation due to its 

versatility. 

 Databases and Applications Requiring Random Access: Where efficient block-level access is critical. 

 Large File Support Systems: Cloud storage backends, digital archives. 

Comparison Table 



Feature Contiguous Allocation Linked Allocation Indexed Allocation 

Access Speed Very fast (sequential & direct) Slow for random access Fast (random & sequential) 

Fragmentation External None None 

File Growth Difficult Easy Easy 

Metadata Overhead Low Moderate (per block) High (index block) 

Suitable For Media, Read-only files Logs, sequential data OS, databases, large files 

Hybrid Systems and Real-World Implementations 

Many modern file systems use hybrid approaches to leverage the strengths of different allocation techniques. 

For example: 

 UNIX/Linux Inodes: Use a combination of direct, single indirect, double indirect, and triple indirect 

blocks, blending indexed allocation with multi-level indexing. Small files use direct pointers, while large 

files scale using indirect ones. 

 FAT (File Allocation Table): A variation of linked allocation where block pointers are stored in a 

separate FAT structure instead of inside each data block. This reduces data block overhead but increases 

seek times due to frequent FAT access. 

 NTFS (New Technology File System): Uses a form of indexed allocation with Master File Table (MFT) 

entries that can store both metadata and direct pointers to data. It adapts based on file size—small files 

may be entirely stored within the MFT entry. 

These implementations highlight the practical trade-offs between performance, space efficiency, and complexity 

in real-world systems. 

6.(b)Evaluate the various directory structures (single-level, two-level, tree-structured, acyclic graph, and general 

graph). Discuss how they impact file sharing, access efficiency, and protection in a multi-user environment. 

In an operating system, the directory structure plays a vital role in organizing files and managing access in a 

systematic manner. As systems scale and evolve to support multiple users, applications, and security requirements, 

directory structures must ensure efficient access, secure file management, and flexible file sharing. The directory 

not only provides a way to locate files but also determines how users interact with the file system. 

Several directory structures are used in modern file systems, each with different capabilities in terms of scalability, 

protection, and usability. These include the single-level directory, two-level directory, tree-structured 

directory, acyclic graph directory, and general graph directory. Each structure offers distinct trade-offs, which 

directly affect file access efficiency, file sharing capabilities, and user-level protections, especially in multi-user 

environments. 

1. Single-Level Directory 

Structure Overview 

In a single-level directory structure, all files are contained within the same directory. Every user and application 

accesses this common pool of files, and each file must have a unique name. This is the simplest form of directory 

management and is typically only suitable for systems with a very limited number of files or users. 

Impact on Access Efficiency 

Accessing files is relatively efficient because the directory is small and flat—searching requires minimal traversal. 

However, as the number of files increases, the single-level directory becomes inefficient. Linear search through 



an increasingly large list slows down file lookup operations. Moreover, without subdirectories, organizing files 

logically becomes difficult, reducing usability. 

Impact on File Sharing 

File sharing is inherently straightforward in this structure because all users access the same directory. However, 

this creates potential for conflicts due to the lack of namespace separation. For example, if two users create files 

with the same name, the system cannot distinguish between them. This severely limits its applicability in multi-

user systems. 

Impact on Protection 

Single-level directories offer minimal protection. Since there is no user-specific separation, enforcing permissions 

on a per-user basis is nearly impossible. All users have equal access to all files unless the operating system 

provides access control outside the directory system. In multi-user environments, this model is insecure and 

unsuitable. 

Use Cases 

 Simple, embedded systems. 

 Early-generation operating systems. 

 Educational or demo systems where user isolation is not critical. 

2. Two-Level Directory 

Structure Overview 

The two-level directory structure introduces a user-level separation. The system has a master file directory (MFD) 

that contains a separate user file directory (UFD) for each user. Each UFD maintains the files created by the 

corresponding user. While users cannot interfere with each other’s file names, each file must still be uniquely 

named within a user's directory. 

Impact on Access Efficiency 

Access efficiency improves as each user searches within their own directory. Since the user directories are 

typically smaller, file lookup is faster compared to a single-level system. This model supports better organization 

and scaling by separating user files into distinct namespaces. 

Impact on File Sharing 

Two-level structures isolate users effectively but hinder file sharing. Since each user has an independent directory, 

explicit mechanisms must be introduced to allow shared access. This can be achieved by creating links or symbolic 

pointers, but such mechanisms are not inherent to the two-level structure. 

Impact on Protection 

This model provides improved protection compared to the single-level structure. User directories are isolated, 

which allows access control at the directory level. Operating systems can enforce permission checks when users 

attempt to access files outside their own directory, supporting basic multi-user security. 

Use Cases 

 Educational or small-scale multi-user systems. 

 Systems requiring basic isolation but minimal file sharing. 

 Early multi-user UNIX-like systems. 



3. Tree-Structured Directory 

Structure Overview 

The tree-structured directory extends the two-level structure by allowing directories to contain subdirectories. 

This results in a hierarchical structure rooted at a base directory. Users and system administrators can create 

directories to organize files logically, grouping them by project, type, or access control requirements. 

Impact on Access Efficiency 

This structure significantly improves organization and scalability. Files are grouped hierarchically, enabling 

efficient search and navigation. Directory paths (e.g., /home/user/docs/report.txt) clearly specify file locations. 

Searching can be optimized using techniques like hash tables or balanced trees within each directory. 

Impact on File Sharing 

Tree-structured directories support limited file sharing. Although users can navigate and access files in other 

directories (with appropriate permissions), there is no built-in mechanism for multiple users to share a single file 

seamlessly. Links and symbolic references can be used for sharing, but care must be taken to ensure consistency 

and prevent cycles. 

Impact on Protection 

Tree structures support robust access control mechanisms. Permissions can be enforced at each directory and file 

level, allowing detailed control over who can read, write, or execute a file. This is especially important in a multi-

user environment, where access control lists (ACLs) or user/group/others permission schemes (e.g., in UNIX) are 

implemented effectively. 

Use Cases 

 Modern desktop and server operating systems (Windows, macOS, Linux). 

 Systems requiring strong file organization and moderate file sharing. 

 Enterprise environments with multiple users and applications. 

4. Acyclic Graph Directory 

Structure Overview 

The acyclic graph structure generalizes the tree structure by allowing directories and files to have multiple parent 

directories. This supports shared subdirectories or files among users. The system avoids cycles, ensuring that 

directory traversal does not result in infinite loops. Hard links and symbolic links are common mechanisms used 

here. 

Impact on Access Efficiency 

Access remains efficient due to the hierarchical nature, though the presence of shared files or directories may 

increase the complexity of managing paths and references. File access times can remain low if the system 

maintains efficient lookup tables and caches frequently accessed links. 

Impact on File Sharing 

File sharing is greatly enhanced. Multiple users can access a common file without duplicating it, ensuring 

consistency and reducing storage overhead. For example, a shared library can be linked in multiple users' 

directories. Users can reference shared data without copying it, which improves collaboration and resource usage. 



Impact on Protection 

Protection becomes more complex due to shared access. If a file is linked in multiple locations, modifying it 

through one path affects all users referencing that file. The system must implement strict permission and locking 

mechanisms to prevent unauthorized modifications or race conditions. Fine-grained access control lists are 

typically used. 

Use Cases 

 UNIX/Linux systems with symbolic links and shared libraries. 

 Multi-user systems requiring efficient collaboration. 

 Networked file systems and shared workspace environments. 

5. General Graph Directory 

Structure Overview 

The general graph structure removes the restriction on cycles, allowing directories and files to be linked arbitrarily, 

including cyclic paths. This creates a complex web of relationships among files and directories. Such flexibility 

provides the greatest power and sharing capability but also introduces significant management challenges. 

Impact on Access Efficiency 

Access efficiency can degrade in general graph structures due to potential cycles and the need for traversal 

detection. Systems must implement mechanisms such as reference counting, garbage collection, or visited-node 

tracking to avoid infinite loops and ensure correct traversal during operations like searching or deletion. 

Impact on File Sharing 

General graphs offer maximum file sharing flexibility. Files and directories can be freely shared and organized in 

various ways. This supports advanced use cases such as versioning, backups, or software dependency trees. 

However, the complexity of managing links, references, and permissions grows with the structure's flexibility. 

Impact on Protection 

Protection is challenging in general graph structures. Since files can be accessed through many paths, ensuring 

consistent permission enforcement requires sophisticated access control and audit mechanisms. Deletion becomes 

non-trivial, as the system must determine whether other links to a file or directory exist. 

Use Cases 

 Complex software development environments (e.g., package managers with dependency graphs). 

 Version control systems (e.g., Git, where commits form a directed graph). 

 Operating systems with advanced symbolic linking and virtualization. 

Comparison Table 

Feature Single-Level Two-Level Tree-Structured Acyclic Graph General Graph 

User Separation None Basic Full Full Full 

File Sharing Difficult Limited Moderate Easy Very Easy 

Access Efficiency Fast (few files) Moderate High High Moderate 



Feature Single-Level Two-Level Tree-Structured Acyclic Graph General Graph 

Protection Support Poor Basic Strong Complex Very Complex 

Namespace Organization Flat Per-user Hierarchical Hierarchical + Links Arbitrary 

Cycles Allowed No No No No Yes 

Use in Modern Systems Rare Limited Common Very Common Specialized 

Impact in Multi-User Environments 

File Sharing 

In multi-user environments, file sharing is a critical requirement. Single and two-level directories provide minimal 

support. Tree-structured directories improve the situation by allowing users to access each other’s directories with 

permissions. Acyclic and general graph structures offer the most flexibility, allowing shared libraries, 

collaborative files, and centralized resources to be accessed by many users without duplication. 

Access Efficiency 

Tree-structured and acyclic graph models strike a balance between efficient access and structural organization. 

The introduction of links allows frequently used files to be easily accessible from multiple paths. However, general 

graph structures may suffer from efficiency issues unless sophisticated caching and traversal strategies are 

implemented. 

Protection and Security 

Security becomes progressively more challenging as directory structures become more complex. Single-level 

directories cannot enforce per-user protection. Two-level systems support basic isolation. Tree structures support 

robust security policies through permission hierarchies. Acyclic and general graphs require advanced mechanisms 

like ACLs, role-based access control, and encryption to ensure secure file sharing and prevent unauthorized 

access. 

7.(a) Critically evaluate various disk scheduling algorithms such as FCFS, SSTF, LOOK, and C-SCAN. Compare 

their performance in terms of seek time and system responsiveness using suitable examples. 

Disk scheduling determines the order in which read/write requests to a disk are served, affecting performance 

metrics such as seek time, throughput, and system responsiveness. Modern disks have mechanical parts, so 

minimizing head movement (seek time) is essential. Several algorithms exist, each with strengths and trade-offs. 

First-Come-First-Serve (FCFS) is the simplest scheduling algorithm. Requests are handled in the order they 

arrive. This approach is easy to implement and fair, ensuring no starvation. However, it often results in high 

average seek time, especially if requests are scattered across the disk. For instance, if the queue contains requests 

at cylinders 10, 70, 20, 90, 30 (starting at head position 50), FCFS will move to 10, then 70, then 20, causing 

unnecessary back-and-forth head movement. Despite its fairness, FCFS is inefficient and unsuitable for systems 

requiring high throughput. 

Shortest Seek Time First (SSTF) selects the request closest to the current head position. This reduces seek time 

significantly by minimizing movement. Using the above example, SSTF would go from 50 to 30, then 20, 10, 70, 

and 90. This results in reduced total seek time. However, SSTF may lead to starvation of far-off requests if closer 

requests keep arriving. While SSTF improves performance over FCFS, it can cause delays for requests at the 

disk’s ends. SSTF is suitable for moderate-load systems with balanced access needs. 

LOOK is an improvement over SCAN (elevator algorithm). It scans in one direction, servicing requests until 

none remain in that direction, then reverses. Unlike SCAN, it doesn’t go to the disk’s end if there are no requests. 

LOOK reduces unnecessary movement and prevents starvation. For example, with head at 50 and requests at 10, 



30, 70, and 90, LOOK moves from 50 → 70 → 90, then reverses to 30 → 10. This method balances efficiency 

and fairness and is suitable for general-purpose operating systems. 

C-SCAN (Circular SCAN) treats the disk as a circular list. The head moves in one direction (e.g., from inner to 

outer tracks), servicing requests, then jumps back to the beginning and starts again. This provides uniform wait 

times, especially for newly arriving requests, avoiding the reversal delay in LOOK. It’s predictable and avoids 

starvation, making it ideal for systems needing fairness, such as shared servers. The drawback is slightly more 

seek time due to the jump back, but the consistent performance offsets this. 

To summarize, FCFS is fair but inefficient; SSTF is fast but may starve requests; LOOK offers a good balance 

between seek time and fairness; and C-SCAN provides uniform performance at the cost of extra travel. C-SCAN 

or LOOK are preferred in modern OSes for fairness and efficiency, while SSTF is used when performance is 

critical and starvation is manageable. 

7(b)Explain the strategies used in disk management and swap-space management. Compare various disk 

scheduling algorithms and justify which algorithm would be most suitable for a real-time operating system. 

Additionally, design a memory management plan incorporating swap-space for a system running multiple large 

applications concurrently. 

1. Disk Management Strategies 

1.1 Disk Partitioning 

Disk partitioning divides a physical disk into logical segments, each acting as a separate volume. Partitions help 

segregate the OS, user data, and swap space, enhancing security and manageability. Partitioning strategies include: 

 Primary and extended partitions: Used in legacy BIOS systems. 

 GUID Partition Table (GPT): Supports larger disks and more partitions. 

 Logical volumes: Created using Logical Volume Manager (LVM) for flexible resizing and snapshotting. 

1.2 Disk Formatting 

Formatting involves preparing a disk with a file system (e.g., NTFS, ext4). This process creates structures like 

boot blocks, superblocks, inodes, and free space maps. File systems organize files and manage metadata, access 

rights, and directory structures. 

1.3 Free Space Management 

Free space can be tracked using: 

 Bitmaps: A sequence of bits where each bit represents a block's allocation status. 

 Linked lists: Free blocks linked together, making traversal easier but slower. 

 Grouping: Stores the addresses of free blocks in groups for faster allocation. 

1.4 Disk Caching 

Disk caching stores frequently accessed disk blocks in main memory, reducing access time. Techniques such as 

write-through and write-back control when data is written back to disk. 

1.5 Disk Reliability and Fault Tolerance 

Modern systems employ redundancy (e.g., RAID) and error detection (e.g., checksums, journaling) to prevent 

data loss. Disk scanning and predictive failure analysis (SMART) also enhance reliability. 

2. Swap-Space Management Strategies 



2.1 Purpose of Swap-Space 

Swap-space, or virtual memory backing store, is used when physical RAM is insufficient to hold all active 

processes. It enables a process to run as if it has more memory than physically available, albeit with a performance 

trade-off. 

2.2 Swap-Space Allocation Policies 

Swap-space can be allocated using: 

 Preallocation: Swap space is reserved for each process at start. This guarantees availability but wastes 

space if unused. 

 Demand allocation: Space is allocated as needed. This is space-efficient but may lead to allocation 

failures under pressure. 

2.3 Swap-Space Location 

Swap-space may reside: 

 On a dedicated disk partition: Faster due to lower overhead. 

 In a regular file: More flexible but incurs file system overhead. 

 On SSDs or NVMe devices: Offers faster swapping compared to HDDs. 

2.4 Swapping Techniques 

 Full process swapping: Entire processes are moved to and from disk. 

 Page-level swapping: Only inactive memory pages are swapped. Modern systems use this with demand 

paging. 

2.5 Swap Management Tools 

Operating systems use tools like swapon, swapoff, and vmstat in Linux to manage and monitor swap usage. 

Swappiness parameters can be tuned to control how aggressively the kernel uses swap space. 

3. Disk Scheduling Algorithms 

Disk scheduling determines the order in which disk I/O requests are serviced. An efficient scheduler improves 

throughput, minimizes latency, and enhances system responsiveness. 

3.1 FCFS (First-Come, First-Served) 

 Algorithm: Requests are processed in the order they arrive. 

 Pros: Simple, fair. 

 Cons: Poor average seek time, long wait times if distant requests precede nearby ones. 

 Use case: Suitable for small, non-critical systems. 

Example: If requests are at cylinders 10, 40, 20, and 60, the disk head will traverse 10→40→20→60, which 

causes unnecessary movement. 

3.2 SSTF (Shortest Seek Time First) 

 Algorithm: Services the request closest to the current head position. 

 Pros: Minimizes seek time. 

 Cons: Can cause starvation of distant requests. 

 Use case: General-purpose systems with moderate load. 



Example: For head at cylinder 30 with requests at 20, 35, and 60, SSTF will go 30→35→20→60. 

3.3 SCAN (Elevator Algorithm) 

 Algorithm: Head moves in one direction, servicing all requests until the end, then reverses. 

 Pros: Fair and better performance than FCFS. 

 Cons: Edge requests may wait longer. 

 Use case: Suitable for workloads with uniform request distribution. 

3.4 C-SCAN (Circular SCAN) 

 Algorithm: Like SCAN, but only services in one direction, jumping to the beginning at the end. 

 Pros: More uniform wait times than SCAN. 

 Cons: Slightly higher average seek than SSTF. 

 Use case: Time-sharing systems. 

3.5 LOOK and C-LOOK 

 LOOK: Like SCAN, but reverses at the last request instead of disk end. 

 C-LOOK: Like C-SCAN, but jumps to the lowest request. 

 Pros: Optimized head movement. 

 Use case: Systems needing balance between performance and fairness. 

4. Disk Scheduling for Real-Time Operating Systems (RTOS) 

Requirements for RTOS 

Real-time systems prioritize predictability and bounded latency over average performance. They must guarantee 

worst-case execution times and meet deadlines for critical tasks. 

Why FCFS or Deadline Scheduling is Preferred 

 FCFS: Though inefficient in average seek time, it ensures predictability, which is vital for real-time 

applications. 

 Earliest Deadline First (EDF): In RTOS, EDF schedules disk requests based on deadline constraints, 

ensuring tasks meet their timing requirements. 

 SSTF, SCAN, C-SCAN: These may cause starvation or unpredictable latencies, making them 

unsuitable. 

 

5. Memory Management Plan with Swap-Space for Large Applications 

In systems running multiple large applications—such as data analytics, simulation software, or integrated 

development environments—efficient memory management is essential to avoid resource exhaustion. 

5.1 Objectives 

 Maximize memory utilization. 

 Minimize swapping overhead. 

 Ensure responsiveness under load. 

 Support concurrency across applications. 



5.2 Components of the Plan 

a. Paging with Demand Paging 

 Divide memory into fixed-size pages and map them to frames in RAM. 

 Load pages only when accessed, reducing memory footprint. 

 Use page replacement algorithms (e.g., LRU, CLOCK) to decide which pages to evict. 

b. Swap-Space Allocation Strategy 

 Use a dedicated swap partition for speed and predictability. 

 Dynamically allocate swap pages using a bitmap allocator. 

 Monitor free swap space and trigger low-memory warnings when thresholds are crossed. 

c. Working Set Model 

 Maintain a “working set” (set of active pages) for each application. 

 Prioritize keeping the working set in RAM to minimize page faults. 

 Dynamically adjust the working set size based on usage patterns. 

d. Priority-Based Memory Allocation 

 Assign priorities to applications (e.g., foreground vs. background). 

 Allocate more memory to high-priority apps, demoting background apps to swap if necessary. 

 Use groups or memory limits to cap usage per application. 

e. Swap-Aware Scheduler Integration 

 The CPU scheduler should consider swap usage when scheduling. 

 Avoid scheduling tasks with high swap thrashing. 

 Integrate I/O scheduling to prioritize swapping I/O during idle CPU cycles. 

5.3 Multi-Application Memory Example 

Assume a system with: 

 16 GB RAM 

 32 GB dedicated swap partition 

 5 applications: A (video editing), B (IDE), C (browser), D (database), E (backup utility) 

Plan Execution: 

1. Application A and D are high-priority; they receive the largest RAM share. 

2. Applications C and E are background; swap their inactive pages aggressively. 

3. LRU or CLOCK algorithm ensures frequently accessed pages remain in RAM. 

4. The swap partition manages overflow from applications C and E. 

5. SSDs are preferred for swap devices to reduce latency. 

8 (a) Designing a file system for cloud or mobile operating systems involves unique challenges: constrained 

resources, remote access, high concurrency, and the need for strong data protection. A robust design must address 

file access methods, directory structures, mounting, sharing, and security. Performance must be optimized using 

smart storage strategies including disk scheduling, RAID, and swap-space management. 

1. Design Considerations for Modern File Systems 



File systems designed for traditional desktop OSs often assume direct control over local storage devices. However, 

cloud and mobile environments introduce unique challenges such as intermittent connectivity, distributed storage, 

multiple client types, and security concerns. Therefore, a robust file system must meet the following criteria: 

 Scalability to handle petabytes of data and millions of users. 

 Fault tolerance to avoid data loss from hardware or network failures. 

 Low latency and high throughput for user responsiveness. 

 Efficient metadata handling for billions of small files. 

 Access control and encryption for data privacy. 

2. File Access Methods 

A versatile file system must support multiple file access methods to accommodate various application 

requirements: 

2.1 Sequential Access 

In mobile systems, streaming media and document viewing are common use cases that benefit from sequential 

access. This method reads data in order and minimizes seek time. 

2.2 Direct (Random) Access 

Direct access is essential in cloud environments where large databases and analytics workloads access specific 

file segments. It allows fast access to individual blocks without scanning the whole file. 

2.3 Indexed Access 

For cloud-based applications like search engines or document storage systems, indexed access supports fast 

retrieval using an index structure (e.g., B-tree). It is particularly useful in NoSQL database storage engines or 

structured object storage. 

2.4 Cloud-Native Access (Object Storage) 

Cloud systems use object-based storage access, where files are treated as objects identified by unique keys. This 

decouples the data from physical location and allows scalable, distributed data access. 

3. Directory Structure Design 

3.1 Tree-Based Directory Structure 

The proposed file system uses a tree-based directory structure with support for symbolic links. This hierarchical 

structure allows easy navigation, simplifies namespace organization, and supports nested directories for logical 

grouping. 

3.2 Metadata Separation 

To support billions of files efficiently, metadata is decoupled from the file content and stored in distributed 

metadata servers. This allows faster updates and concurrent access without file locking. 

3.3 Caching and Synchronization 

On mobile devices, caching of directory contents allows offline access. Sync algorithms like rsync or delta 

encoding are used to update only the changed parts of a file or directory, reducing bandwidth usage. 

4. File System Mounting and Namespace Management 



4.1 Mounting Techniques 

Cloud-based file systems often use network-mounted protocols such as NFS or SMB, or they employ FUSE-

based mounting to allow user-space file systems. 

Mobile operating systems typically mount file systems as user storage partitions, with additional application 

sandboxing to restrict access. 

4.2 Namespace Virtualization 

To handle user-specific data securely in the cloud, namespace isolation is implemented using: 

 Per-user logical namespaces 

 Application-specific directories 

 Access keys or tokens mapped to virtual paths 

This allows multiple tenants or users to operate within the same physical storage infrastructure without data 

leakage. 

5. File Sharing and Synchronization 

5.1 Sharing Mechanisms 

A robust file system includes: 

 Link-based sharing (URL with access tokens) 

 Collaborative sharing (real-time co-editing with locking mechanisms) 

 Access delegation (temporary read/write privileges) 

Cloud file systems (e.g., Google Drive) use these models to allow flexible and secure file access between users 

and devices. 

5.2 Conflict Resolution 

To manage concurrent edits in distributed settings: 

 Operational transformation (e.g., in collaborative docs) 

 Version control and conflict logs 

 Timestamp-based last-writer-wins policies 

Mobile systems sync changes upon network reconnection using these models to prevent data loss. 

6. File Protection and Security 

6.1 Access Control 

Files are protected using: 

 Discretionary Access Control (DAC): Users set permissions (e.g., read/write/execute). 

 Role-Based Access Control (RBAC): Common in enterprise cloud file systems. 

 Mandatory Access Control (MAC): Used in security-focused mobile OSs (e.g., Android’s SEAndroid). 

6.2 Encryption 

 At-rest encryption: Files are stored using AES-256 or similar standards. 



 In-transit encryption: TLS/SSL ensures secure communication over networks. 

6.3 Authentication 

Authentication mechanisms include OAuth2, biometrics (mobile), and multi-factor authentication (MFA) for 

access. 

6.4 Audit Logging 

Modern systems include audit logs for file access, changes, and sharing events to ensure accountability and 

compliance. 

7. Mass Storage Optimization 

7.1 Disk Scheduling Algorithms 

a. C-SCAN (Circular SCAN) 

Provides uniform wait time for I/O requests by scanning in one direction and jumping to the start. Suitable for 

multi-tenant systems with consistent loads. 

b. Deadline Scheduling 

Used in latency-sensitive mobile systems and virtual machines where I/O operations must meet timing constraints. 

c. Grouped Scheduling 

Batching read/write operations improves throughput. Cloud systems often coalesce I/O operations before writing 

to disk. 

7.2 RAID in Cloud/Mobile Systems 

a. RAID in Cloud 

RAID is used within data centers to improve performance and fault tolerance. 

 RAID 0: Used for performance (e.g., caching layers). 

 RAID 1/5/6: Used in backend storage for redundancy and recovery. 

Distributed RAID-like redundancy, such as in Google File System (GFS) and HDFS, replicates files across nodes. 

b. RAID in Mobile Devices 

Due to limited storage, RAID is not common on individual devices. However, techniques like wear leveling and 

bad block management on SSDs resemble RAID logic. 

7.3 Swap-Space Management 

a. Cloud Systems 

Use large swap spaces to offload inactive VM memory pages. Dynamic ballooning and memory overcommitment 

techniques help manage multiple workloads efficiently. 

b. Mobile OS 

Swap is limited due to power and performance constraints. However, Android introduced zRAM to compress 

memory and swap to a virtual RAM disk, improving multitasking without physical disk I/O. 



8. Case Studies of Real-World Systems 

8.1 Google File System (GFS) 

 Designed for large-scale data-intensive applications. 

 Uses large chunk files and replicates them on multiple nodes. 

 Metadata is centrally managed for performance. 

 Optimized for write-once, read-many scenarios. 

Lessons for our design: 

 Replication is better than RAID for distributed fault tolerance. 

 Separate control (metadata) and data planes improve performance. 

8.2 Amazon S3 

 Object storage with scalable, key-based access. 

 Provides features like versioning, lifecycle rules, and multi-region replication. 

 Uses REST APIs for access, making it suitable for mobile/cloud. 

Lessons: 

 Object storage is better than block/file storage for cloud-native apps. 

 Namespace abstraction and access keys improve security and usability. 

8.3 Apple iCloud 

 Seamlessly integrates file storage with mobile devices. 

 Automatically syncs documents and photos across devices. 

 Uses content hashes and deduplication to optimize space. 

8(a)(i) If 100 libraries are loaded at startup, each requiring one disk access, with a seek time of 10 ms and a 

rotational speed of 6000 rpm, how long does it take to load all libraries? 

To determine the total time required to load 100 libraries, we must consider the seek time, rotational latency, 

and data transfer time per access. Since the question assumes one disk access per library, we calculate the time 

per access and multiply it by 100. 

1. Understanding Disk Access Time 

Disk access time consists of: 

1. Seek time: Time to move the read/write head to the desired track. 

2. Rotational latency: Time taken for the desired sector to rotate under the read/write head. 

3. Data transfer time: Time taken to transfer the data from the disk to memory. 

Given: 

 Seek time = 10 ms 

 Rotational speed = 6000 rpm 

 Number of libraries = 100 

Note: Data transfer time is generally very small compared to seek and rotational latency, so we can ignore it unless 

specified. 



2. Rotational Latency Calculation 

To compute the average rotational latency, we use the formula: 

Average Rotational Latency=12×Time for one rotation\text{Average Rotational Latency} = \frac{1}{2} \times 

\text{Time for one rotation}Average Rotational Latency=21×Time for one rotation  

Rotational speed is 6000 rpm, which means the disk completes 6000 revolutions per minute. Convert this to 

revolutions per second: 

6000 rpm=600060=100 revolutions per second6000 \, \text{rpm} = \frac{6000}{60} = 100 \, \text{revolutions 

per second}6000rpm=606000=100revolutions per second  

So, time for one full revolution is: 

1100=0.01 seconds=10 ms\frac{1}{100} = 0.01 \, \text{seconds} = 10 \, \text{ms}1001=0.01seconds=10ms  

Thus, average rotational latency: 

102=5 ms\frac{10}{2} = 5 \, \text{ms}210=5ms  

3. Total Time Per Access 

Each access requires: 

 Seek time = 10 ms 

 Average rotational latency = 5 ms 

Total access time per library=10+5=15 ms\text{Total access time per library} = 10 + 5 = 15 \, 

\text{ms}Total access time per library=10+5=15ms  

For 100 libraries: 

Total time=100×15=1500 ms=1.5 seconds\text{Total time} = 100 \times 15 = 1500 \, \text{ms} = 1.5 \, 

\text{seconds}Total time=100×15=1500ms=1.5seconds  

Final Answer (i): 

The total time to load all 100 libraries is 1.5 seconds assuming one disk access per library and ignoring data 

transfer overhead. 

8(b)(ii) A FAT-based file system uses 4-byte entries. Given a 100 MB disk and 1 KB data blocks, what is the 

maximum file size? 

To calculate the maximum file size supported by a FAT (File Allocation Table)-based file system, we need to 

understand how FAT works and how it limits file sizes based on the number of data blocks it can address. 

1. Key Parameters 

 Disk size = 100 MB = 100 × 1024 × 1024 = 104,857,600 bytes 

 Block size = 1 KB = 1024 bytes 

 FAT entry size = 4 bytes 

Each file in a FAT system consists of a linked list of data blocks, where each block contains a pointer to the next 

block (via the FAT entry). A 4-byte FAT entry can support a large number of blocks. 



2. Total Number of Data Blocks 

First, determine how many data blocks are there in the 100 MB disk: 

104,857,600 bytes1024 bytes/block=102,400 blocks\frac{104,857,600 \, \text{bytes}}{1024 \, 

\text{bytes/block}} = 102,400 \, \text{blocks}1024bytes/block104,857,600bytes=102,400blocks  

So, the entire disk consists of 102,400 data blocks. 

3. FAT Size (Overhead) 

Each block requires a 4-byte FAT entry. The size of the FAT itself is: 

102,400×4=409,600 bytes=400 KB102,400 \times 4 = 409,600 \, \text{bytes} = 400 \, 

\text{KB}102,400×4=409,600bytes=400KB  

This FAT must be stored on the disk itself, reducing the space available for actual data. However, for this problem, 

we are interested in the maximum size a single file can grow to, not the total storage available. 

4. Maximum File Size Calculation 

Each block can hold 1 KB of data. If a single file used all the blocks available in the system (assuming FAT can 

point to all of them), then: 

Max file size=Number of addressable blocks×Block size\text{Max file size} = \text{Number of addressable 

blocks} \times \text{Block size}Max file size=Number of addressable blocks×Block size  

The number of blocks that can be addressed by a 4-byte FAT entry = 232=4,294,967,2962^{32} = 

4,294,967,296232=4,294,967,296 entries 

So in theory, a FAT system with 4-byte entries can support over 4 billion data blocks. But the disk in this case 

only has 102,400 blocks, so that is the upper bound. 

Max file size=102,400×1024=104,857,600 bytes=100 MB\text{Max file size} = 102,400 \times 1024 = 

104,857,600 \, \text{bytes} = 100 \, \text{MB}Max file size=102,400×1024=104,857,600bytes=100MB  

Thus, on this 100 MB disk, a single file can span the entire disk, assuming no other files are present and FAT 

overhead is disregarded. 

5. Practical Limitations 

In practice: 

 The FAT itself occupies space on the disk (400 KB). 

 There is overhead for root directory, boot sector, and possibly reserved sectors. 

 Not all 102,400 blocks will be available for a single file. 

However, assuming that all blocks are usable and the FAT overhead is managed separately, the maximum 

theoretical file size remains 100 MB. 

FAT File System Characteristics 

 Simplicity: FAT is straightforward to implement, making it ideal for small-scale storage systems, 

embedded systems, and USB drives. 

 Limitations: FAT32 (32-bit entries) limits file sizes to 4 GB. In this case, 4-byte (32-bit) entries are 

more than sufficient for addressing a 100 MB disk. 



Final Answer (ii): 

The maximum file size supported on a 100 MB disk with 1 KB blocks and 4-byte FAT entries is 100 MB, as a 

file can use all available data blocks on the disk. 

 


	1. Contiguous Allocation
	Mechanism
	Advantages
	Disadvantages
	Suitable Applications

	2. Linked Allocation
	Mechanism
	Advantages
	Disadvantages
	Suitable Applications

	3. Indexed Allocation
	Mechanism
	Advantages
	Disadvantages
	Suitable Applications

	Comparison Table
	Hybrid Systems and Real-World Implementations
	1. Single-Level Directory
	Structure Overview
	Impact on Access Efficiency
	Impact on File Sharing
	Impact on Protection
	Use Cases

	2. Two-Level Directory
	Structure Overview
	Impact on Access Efficiency
	Impact on File Sharing
	Impact on Protection
	Use Cases

	3. Tree-Structured Directory
	Structure Overview
	Impact on Access Efficiency
	Impact on File Sharing
	Impact on Protection
	Use Cases

	4. Acyclic Graph Directory
	Structure Overview
	Impact on Access Efficiency
	Impact on File Sharing
	Impact on Protection
	Use Cases

	5. General Graph Directory
	Structure Overview
	Impact on Access Efficiency
	Impact on File Sharing
	Impact on Protection
	Use Cases

	Comparison Table (1)
	Impact in Multi-User Environments
	File Sharing
	Access Efficiency
	Protection and Security

	1. Disk Management Strategies
	1.1 Disk Partitioning
	1.2 Disk Formatting
	1.3 Free Space Management
	1.4 Disk Caching
	1.5 Disk Reliability and Fault Tolerance

	2. Swap-Space Management Strategies
	2.1 Purpose of Swap-Space
	2.2 Swap-Space Allocation Policies
	2.3 Swap-Space Location
	2.4 Swapping Techniques
	2.5 Swap Management Tools

	3. Disk Scheduling Algorithms
	3.1 FCFS (First-Come, First-Served)
	3.2 SSTF (Shortest Seek Time First)
	3.3 SCAN (Elevator Algorithm)
	3.4 C-SCAN (Circular SCAN)
	3.5 LOOK and C-LOOK

	4. Disk Scheduling for Real-Time Operating Systems (RTOS)
	Requirements for RTOS
	Why FCFS or Deadline Scheduling is Preferred

	5. Memory Management Plan with Swap-Space for Large Applications
	5.1 Objectives
	5.2 Components of the Plan
	a. Paging with Demand Paging
	b. Swap-Space Allocation Strategy
	c. Working Set Model
	d. Priority-Based Memory Allocation
	e. Swap-Aware Scheduler Integration

	5.3 Multi-Application Memory Example

	1. Design Considerations for Modern File Systems
	2. File Access Methods
	2.1 Sequential Access
	2.2 Direct (Random) Access
	2.3 Indexed Access
	2.4 Cloud-Native Access (Object Storage)

	3. Directory Structure Design
	3.1 Tree-Based Directory Structure
	3.2 Metadata Separation
	3.3 Caching and Synchronization

	4. File System Mounting and Namespace Management
	4.1 Mounting Techniques
	4.2 Namespace Virtualization

	5. File Sharing and Synchronization
	5.1 Sharing Mechanisms
	5.2 Conflict Resolution

	6. File Protection and Security
	6.1 Access Control
	6.2 Encryption
	6.3 Authentication
	6.4 Audit Logging

	7. Mass Storage Optimization
	7.1 Disk Scheduling Algorithms
	a. C-SCAN (Circular SCAN)
	b. Deadline Scheduling
	c. Grouped Scheduling

	7.2 RAID in Cloud/Mobile Systems
	a. RAID in Cloud
	b. RAID in Mobile Devices

	7.3 Swap-Space Management
	a. Cloud Systems
	b. Mobile OS


	8. Case Studies of Real-World Systems
	8.1 Google File System (GFS)
	8.2 Amazon S3
	8.3 Apple iCloud
	8(a)(i) If 100 libraries are loaded at startup, each requiring one disk access, with a seek time of 10 ms and a rotational speed of 6000 rpm, how long does it take to load all libraries?
	1. Understanding Disk Access Time
	2. Rotational Latency Calculation
	3. Total Time Per Access
	Final Answer (i):

	8(b)(ii) A FAT-based file system uses 4-byte entries. Given a 100 MB disk and 1 KB data blocks, what is the maximum file size?
	1. Key Parameters
	2. Total Number of Data Blocks
	3. FAT Size (Overhead)
	4. Maximum File Size Calculation
	5. Practical Limitations
	FAT File System Characteristics
	Final Answer (ii):



