
19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN

• Blended Course

• Unit I –Automata Theory

• Unit II to V - Compiler and phases of compiler

• What is Automata Theory?

– An mathematical model for Abstract machine

– Prototype

– Blueprint model

– Real-Time Example:

• On-Off Switch

• Vacuum Cleaner

• Automatic Car

• ATM

8/2/2023 AT&CD - UNIT I - M.SHOBANA,AP/CSE/SNSCT 1

Automata

• Mathematical model – Abstract Machine

• Example

• ON-OFF Switch

– States and Transition

Automata for Switch Model

8/2/2023 AT&CD - UNIT I - M.SHOBANA,AP/CSE/SNSCT 2

Vacuum Cleaner

8/2/2023 AT&CD - UNIT I - M.SHOBANA,AP/CSE/SNSCT 3

States of a Automatic Vacuum Cleaner

Autonomous Car

8/2/2023 AT&CD - UNIT I - M.SHOBANA,AP/CSE/SNSCT 4

Unit 2 to Unit 4

• Why compiler design?

– To implement a new programming language

– Design a compiler

– How the Translation is done?

8/2/2023
AT&CD - UNIT I -

M.SHOBANA,AP/CSE/SNSCT
5

Central Concepts of Automata Theory

• Symbols

– {a,b,c,….,0,1,2,….}

• Alphabet

– Finite set of symbols

– ∑ (a,b)

• String

– Collection of Alphabets

– Example: ∑ (a,b) = a, b, aa, ab, ba, bb, aaa, bbb

– Length = 1 = {a,b} |s| = 1 nm=21=2

– Length = 2 = {aa,ab,ba,bb} |s| = 2 nm=22=4
– Length = 3 = {aaa,aab,aba,abb,baa,bab,bba,bbb} |s| = 3 nm=23=8

8/2/2023
AT&CD - UNIT I -

M.SHOBANA,AP/CSE/SNSCT
6

• Language

– Collection of Strings

– Example : ∑ (c,d) L1 = {cc,cd,dc,dd}

– Finite language
• L1 = String of length 2 ={cc,cd,dc,dd}

– Infinite language
– L2 = String that has at least 1 a

– L2 = {a,aa,aaa,aaaa,……..

{ba,aba,bba,abba,…..}

– Find String {bbbba} in L2 cannot do manually Automata

– Power ∑0 = empty, {0}

8/2/2023
AT&CD - UNIT I -

M.SHOBANA,AP/CSE/SNSCT
7

Central Concepts of Automata Theory

• Finite State Machine
– Lexical Analysis of Compiler

– Text Editors

• Push Down Automata
– Syntax Analysis of Compiler

– Stack Applications

• Linear Bounded Automata
– Semantic Analysis of Compiler

– Genetic Programming

• Turing Machine
– Neural Network

– Robotic Applications

8/2/2023
AT&CD - UNIT I -

M.SHOBANA,AP/CSE/SNSCT
8

Types of Automata

UNIT I FINITE AUTOMATA AND REGULAR LANGUAGES 9+6

Introduction - Central concepts of Automata Theory - Types of Grammars- Regular Expressions, Identity rules for Regular Expressions -

Finite State Automata - Deterministic Finite State Automata(DFA), Non Deterministic Finite State Automata(NDFA) - Equivalence of

DFA and NDFA -Pushdown Automata - Languages of a Pushdown Automata -- Turing Machines- Languages of Turing Machine.

Lab Practice: Construction of NFA from Regular Expression. Construction of minimized DFA from a given regular expression

UNIT II COMPILERS AND LEXICAL ANALYSIS 9+6

Introduction to Compiling – Compilers – Analysis of the source program – The phases – Cousins – The grouping of phases – Compiler

construction tools. The role of the lexical analyzer – Input buffering – Specification and Recognition of tokens – Finite automata –

Regular expression to finite automata – A language for specifying lexical analyzer – tool for generating lexical analyzer.

Lab Practice:Implementation of Lexical Analyzer, Implementation of LEX specification.

UNIT III SYNTAX ANALYSIS AND SEMANTIC ANALYSIS 9+6

Syntax Analysis – The role of the parser – Context-free grammarsL – Writing a grammar – Top down parsing – Bottom-up Parsing – LR

parsers – SLR Parsers – Canonical LR Parsers – LALR Parsers – Constructing an LR parsing table – Tool to generate parser – Semantic

Analysis: Type Checking – Type Systems – Specification of a simple type checker

Lab Practice: Construction of LR parsing table.Implementation of syntax analysis using YACC, Construction of Shift Reduce Parser.

UNIT IV
RUN TIME ENVIRONEMENT AND INTERMEDIATE CODE GENERATION

9+6

Run-Time Environments – Source language issues – Storage organization – Storage-allocation strategies – Intermediate languages –

Declarations – Assignment statements – Boolean expressions – Case statements – Back patching – Procedure calls.

Lab Practice:

Generation of code for a given intermediate code generator.

UNIT V CODE GENERATION AND CODE OPTIMIZATION 9+6

Issues in the design of a code generator – The target machine – Run-time storage management – Basic blocks and flow graphs – Next-use

information – A simple code generator – Register allocation and assignment – The DAG representation of basic blocks – Generating code

from DAGs.

Introduction to optimization techniques – The principle sources of optimization – Peephole optimization – Optimization of basic blocks –

Loops in flow graphs – Introduction to global data-flow analysis – Code improving transformations.

Lab Practice:

Implementation of DAG representation.8/2/2023
AT&CD - UNIT I - M.SHOBANA,AP/CSE/SNSCT

9

8/2/2023 AT&CD - UNIT I - M.SHOBANA,AP/CSE/SNSCT 10

