

Input Buffering

- Input Buffering
 - Lexical Analysis Right lexeme \rightarrow one /more characters look up
 - Left to Right \rightarrow backward pointer and forward pointer
 - − Disk read operation costly \rightarrow Buffer

- Pointers to buffer pair
 - Lexeme begin
 - forward

• Two buffer scheme (Initial Configuration)

Initial Configuration

Input Buffering

• Two buffer scheme (After reading a token)

- To move the forward pointer
 - Check the end of buffer \rightarrow reload the other buffer
 - Next character to read
- Combine \rightarrow Sentinels (eof)
 - − $eof \rightarrow end of entire input$
 - − eof \rightarrow end of buffer

Input Buffering

Lookahead code with sentinels:
switch (*forward++) {
case eof:
if (forward is at end of first buffer) {
reload second buffer;
forward = beginning of second buffer;
}
else if (forward is at end of second buffer) {
reload first buffer;
forward = beginning of first buffer;
}
else /* eof within a buffer marks the end of input */
terminate lexical analysis;
break;
1

}

Specification of Tokens

Regular expressions are an important notation for specifying lexeme patterns

An alphabet is a finite set of symbols.

- Typical example of symbols are letters, digits and punctuation etc.
- The set {0, 1} is the binary alphabet.

A **string** over an alphabet is a finite sequence of symbols drawn from that alphabet.

- The length is string s is denoted as |s|
- Empty string is denoted by ε

Prefix: ban, banana, ε , etc are the prefixes of banana **Suffix:** nana, banana, ε , etc are suffixes of banana

Kleene or closure of a language L, denoted by L*.

- L*: concatenation of L zero or more times
- L⁰: concatenation of L zero times
- L⁺: concatenation of L one or more times

Kleene closure

 $L = \{a, bc\}$ Let: L' denotes "zero or more concatenations of" L *Example:* $L^0 = \{ \epsilon \}$ $L^1 = L = \{ a, bc \}$ $L^2 = LL = \{aa, abc, bca, bcbc\}$ $L^3 = LLL = \{aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc \}$etc.... $L^{N} = L^{N-1}L = LL^{N-1}$ $\sum_{i=0}^{n} a^{i} = a^{0}$ The "Kleene Closure" of a language: $L^* = \bigcup_{i=1}^{\infty} L^i = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \dots$ Example: $L^* = \{ \epsilon, a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... \}$

Example

Let: L = { a, b, c, ..., z } D = { 0, 1, 2, ..., 9 }

D⁺ = "The set of strings with one or more digits"

 $L \cup D$ = "The set of all letters and digits (alphanumeric characters)"

LD = "The set of strings consisting of a letter followed by a digit"

 L^* = "The set of all strings of letters, including ε , the empty string"

 $(L \cup D)^* = "Sequences of zero or more letters and digits"$

L ((L ∪ D)*) = "Set of strings that start with a letter, followed by zero or more letters and digits."

Rules for specifying Regular Expressions

Regular expressions over alphabet Σ

- **1.** ε is a regular expression that denotes { ε }.
- If a is a symbol (i.e., if a ∈ ∑), then a is a regular expression that denotes {a}.
- Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then
 - a) (r) | (s) is a regular expression denoting L(r) U L(s).
 - b) (r)(s) is a regular expression denoting L(r)L(s).
 - c) (r)* is a regular expression denoting (L(r))*.
 - d) (r) is a regular expression denoting L(r).

How to "Parse" Regular Expressions

Precedence:

- * has highest precedence.
- Concatenation as middle precedence.
- I has lowest precedence.
- Use parentheses to override these rules.

• Examples:

- a b* = a (b*)
 - If you want (a b)* you must use parentheses.
- a | b c = a | (b c)
 - If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

- (a b) c = a (b c) = a b c
- (a | b) | c = a | (b | c) = a | b | c

Example:

Example

- Let Σ = {a, b}
 - The regular expression a | b denotes the set {a, b}
 - The regular expression (a|b)(a|b) denotes {aa, ab, ba, bb}
 - The regular expression a^{*} denotes the set of all strings of zero or more a's. i.e., {ε, a, aa, aaa, }
 - The regular expression (a|b)* denotes the set containing zero or more instances of an a or b.
 - The regular expression a|a*b denotes the set containing the string a and all strings consisting of zero or more a's followed by one b.

Regular Definition

$$\begin{array}{rcl} letter_ & \rightarrow & \mathbb{A} \mid \mathbb{B} \mid \cdots \mid \mathbb{Z} \mid \mathbb{a} \mid \mathbb{b} \mid \cdots \mid \mathbb{Z} \mid _ \\ digit & \rightarrow & 0 \mid 1 \mid \cdots \mid 9 \\ id & \rightarrow & letter_(\ letter_ \mid digit)^* \end{array}$$