

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELIGENCE & MACHINE LEARNING

23AMT302- COMPUTER NETWORK AND SECURITY

UNIT 1 – Introduction and Application Layer

Prepared by A.catherine AP/AIML

Unveiling the Network: Fundamentals & Layers

Understanding the backbone of modern communication.

Networks connect billions of devices globally.

Key concepts: Connectivity, Protocols, Architecture.

What is a Computer Network?

Definition

Interconnected devices sharing resources and information.

Purpose

Communication, resource sharing (e.g., printers, files), distributed processing.

Core Components

Nodes (devices), Links (cables, wireless), Protocols (rules).

Global scale: Over 5.3 billion internet users as of 2023.

Types of Networks

PAN (Personal Area Network)	Bluetooth (up to 10 meters)	e.g., wireless earb
LAN (Local Area Network)	Ethernet, Wi-Fi (up to 1000 meters)	e.g., office or hom
MAN (Metropolitan Area Network)	City-wide coverage	e.g., fiber optic bac areas.
WAN (Wide Area Network)	Internet, MPLS (global reach)	e.g., corporate VPI continents.

buds.

me network.

ackbone for urban

PN connecting

Network Topologies

Star

All devices connect to a central hub/switch; 90%+ common in LANs.

Bus

Single backbone cable; older, prone to singlepoint failure.

RingMeData flows in a circle; usedEvein some fiber opticevenetworks (e.g., FDDI).rec

Every device connected to every other; high redundancy, expensive; used in critical backbone.

Mesh

Introduction to Network Models

- Why Models? Standardize communication, ensure interoperability, simplify troubleshooting. ullet
- OSI (Open Systems Interconnection) Model: 7 layers, theoretical, ISO standard (1984). \bullet
- TCP/IP (Transmission Control Protocol/Internet Protocol) Model: 4/5 layers, practical, underpins the Internet. ullet
- Key Concept: Encapsulation (data wrapped as it moves down layers). ullet

The OSI Model: Lower Layers (1–3)

The OSI Model: Upper Layers (4–7)

Layer 7: Application

⁺<u>Å</u>⁺

(=)

Provides network services to applications (HTTP, SMTP).

Layer 6: Presentation

Translates data format; handles encryption/decryption (SSL/TLS).

Layer 5: Session

Establishes, manages, and terminates communication sessions.

Layer 4: Transport

Manages end-to-end communication; TCP vs. UDP; port numbers.

The TCP/IP Model

Key Networking Devices

Hub

Layer 1, broadcasts all traffic, inefficient (e.g., 10Mbps shared bandwidth).

Switch

Layer 2, intelligent forwarding using MAC addresses; reduces network congestion by 10x vs. hubs.

Firewall

Network security device; filters traffic based on defined rules (e.g., blocks specific port access).

ഫ

Router

Layer 3, connects different networks, makes routing decisions; handles 1M+ packets/sec.

Conclusion: The Foundation of Connectivity

Integral to Modern Life

Networks are essential for business and daily activities.

Crucial for Expertise

Understanding basics aids troubleshooting and design.

Structured Framework

Layered models ensure interoperability and order.

Future Trends 5G, IoT, AI-driven automation shaping networks.

