

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECE304-SMART SENSORS AND DEVICES

III ECE / V SEMESTER

UNIT 1 – OVERVIEW OF MEASUREMENTS AND SENSORS

TOPIC -ERROR ANALYSIS

ERROR ANALYSIS

Accuracy

- Closeness to the true value
- Measurement Accuracy determines the closeness of the measured value to the true value
- Instrument Accuracy related to the worst accuracy obtainable within the dynamic range of the instrument in a specific operating environment

```
error = (measured value) - (true value)
correction = (true value) - (measured value)
```

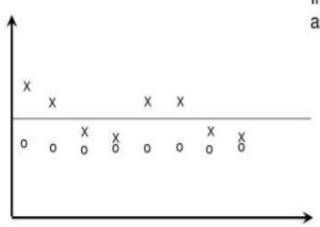
Causes for error: instrument instability, external noise (disturbances), poor calibration, poor analytical models, parameter changes due to environmental changes, and improper use of instrument

Error Analysis

- Errors can be classified as deterministic (systematic) and random (stochastic)
- Deterministic errors are caused by well-defined factors such as
 - Nonlinearities
 - Offsets in readings
- Can be accounted for by proper calibration and analysis practices calibration charts and error ratings
- · Random errors are caused by uncertain factors such as
 - Noise
 - Unknown random variations in the operating environment
- Statistical analysis using a sufficiently large number of data is necessary to estimate random errors

PRECISION

Reproducibility (or repeatability) of an instrument reading determines the precision



Instrument error may be represented as a random variable with

- Mean μ_e
- Standard deviation σ_e

If the standard deviation is zero the error is deterministic or repeatable

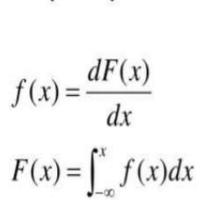
Precision = (measurement range)/ σ_a

Review of Probability and Statistics

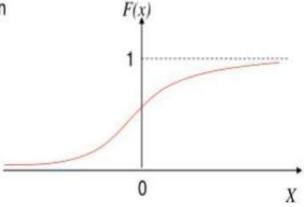
Cumulative Probability Density Function

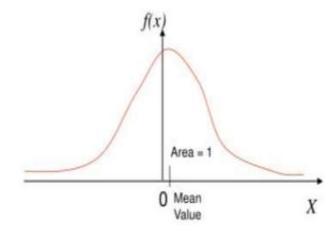
$$F(x) = P(X \le x)$$

Probability Density Function



$$F(x) = \int_{-\infty}^{x} f(x) dx$$





Probability that a random variable falls within two values

$$P(a < X \le b) = F(b) - F(a)$$

$$= \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx$$

$$= \int_{a}^{b} f(x)dx$$

Mean Value (Expected Value)

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Mean Square Value

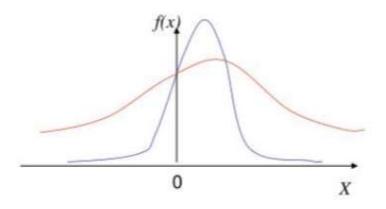
$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

Variance and Standard Deviation

$$Var(X) = \sigma^2 = E\{[X - E(X)]^2\}$$

$$\sigma^2 = E(X^2) - \mu^2$$

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$



Some Properties

If f(x) is pdf of X the mean and variance of aX + b

$$a\mu + b$$

 $a^2 Var(X)$

Independent Random Variables

Random variables X_i and X_2 are said to be independent if the event X_i assumes a certain value is completely independent from the event X_2 assumes a certain value.

For independent Random variables X_1 and X_2

$$E(X_1X_2) = E(X_1)E(X_2)$$

 $Var(X_1 + X_2) = Var(X_1) + Var(X_2)$

Sample Mean

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Sample Variance

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \overline{X})^{2}$$

Unbiased Estimates

$$E(\overline{X}) = \mu$$

$$E(\overline{X}) = \mu$$
$$E(S^2) = \sigma^2$$

Gaussian (Normal) Distribution

- · Most extensively used probability distribution in engineering applications
- · Probability density function is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Central Limit Theorem

A random variable that is formed by summing a very large number of independent random variables takes Gaussian distribution in the limit.

Standard Normal Distribution

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 $z = \frac{X - \mu}{\sigma}$ $E(Z) = 0$ $Var(Z) = 1$