Subject Details
Dept     : MBA
Sem      : 2
Regul    : 2023
Faculty : Dr.P.Krishnaveni
phone  : 9942063355
E-mail  : krishnaveni.p.mba@snsct.org
199
Page views
0
Files
0
Videos
0
R.Links

Icon
Syllabus

UNIT
1
INTRODUCTION TO AZUREML

Sources of Data - Analytics Value Escalator - Story of a Company - Getting Started with Azureml.

UNIT
2
EXTRACT LOAD AND TRANSFORM

Introduction to Extract, Load and Transform - Generating Value from Multiple Sources of Data - Database and SQL - SQL Joins - Other ELT Tasks

UNIT
3
DESCRIPTIVE ANALYTICS

Descriptive analytics Introduction - Application in World trade Data - Describing Single Quantity - Credit Card Data Set - Describing a Single Quantity in Azureml - Describing Two Quantities in Azureml.

UNIT
4
PREDICTIVE ANALYTICS – I

Forecasting, Time Series Analysis - Additive & Multiplicative Models - Exponential Smoothing Techniques.

UNIT
5
PREDICTIVE ANALYTICS – II

Forecasting Accuracy - Auto-regressive and Moving Average Models - Demo using SPSS.

Reference Book:

Sumit Mund, ‘Microsoft Azure Machine Learning’, Packt Publishing. Anil Maheswari, ‘Data Analytics Made Accessible’, THM Publishers.

Text Book:

Fontama et.al, ‘Predictive Analytics with Microsoft Azure Machine Learning’, Apress. Eric Siegel, ‘Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die’, Wiley.