Subject Details
Dept     : AIML
Sem      : 5
Regul    : 2023
Faculty : Ms M Mohanapriya
phone  : 8148168398
E-mail  : aiml14
8
Page views
0
Files
0
Videos
0
R.Links

Icon
Syllabus

UNIT
1
INTRODUCTION OF CLOUD COMPUTING

Introduction to cloud - Cloud Architecture - Cloud Components: Public, Private and Hybrid Cloud - Introduction of AI Cloud Services - AWS - Google AI - Azure AI - AI with Cloud - Identity and Access Management – Role - Policies.

UNIT
2
CLOUD INFRASTRUCTURE FOR AI

Cloud Architectures for AI/ML Workloads - GPU and TPU Acceleration - Scalable Storage Solutions for AI: S3 - BigQuery - High-Performance Computing (HPC) - Cost Optimization Strategies for AI.

UNIT
3
CLOUD PLATFORMS FOR AI/ML

SageMaker - EC2: GPU Instances - S3: for data storage - Cloud AI Platform - Cloud Vision API - Natural Language API - Compute Engine with GPU Support - Cloud Storage

UNIT
4
DATA ENGINEERING FOR AI/ML

Data Ingestion and Transformation - Data Sources - Databases – APIs - Streaming - Data Cleaning and Preprocessing - Data Pipelines and ETL/ELT Processes - Data Storage and Management - Cloud Data Warehouses – Snowflake - Redshift - Data Lakes: AWS S3 - Azure Data Lake Storage - NoSQL Databases: MongoDB - Cassandra

UNIT
5
MLOPS AND AI/ML LIFECYCLE MANAGEMENT

Model Deployment and Monitoring - Continuous Integration/Continuous Delivery (CI/CD) for ML - Model Versioning and Tracking - Model Performance Monitoring and Drift Detection - Model Retraining and Updates - AI/ML Governance and Security

Reference Book:

Murali Kadrekar “AI in Cloud Computing: Revolutionizing Cloud Computing with Artificial Intelligence” 1st Edition, Sudeva Publications 2024

Text Book:

Michael J. Kavis, "Architecting the Cloud: Design Decisions for Cloud Computing Service Models (SaaS, PaaS, and IaaS)", 1st Edition Wiley 2014 2 Giuseppe Ciaburro, "Hands-On Machine Learning on Google Cloud Platform: Implementing Smart and Scalable Models Using efficient analytics using Cloud ML Engine", 1st Edition, Packt Publishing April 2018